
US $34.99
www.friendsofed.com
www.htmlmastery.com 6 89253 59765 1

ISBN 1-59059-765-6

9 781590 597651

53499

this print for reference only—size & color not accurate spine = 0.584" 248 page count

IN THIS BOOK YOU’LL LEARN:

How to avoid presentational markup and streamline your HTML

How to enrich your content with semantic meaning

When to use all the available advanced XHTML and HTML elements

Advanced semantic technologies such as Microformats

The future of markup, including a look ahead at XHTML 2.0, Web Applications 1.0, and The Semantic Web

Markup is the fabric that holds the web together. But
most people only scratch the surface of what can be
achieved using (X)HTML. That’s where this book comes

in—it’s aimed at web designers and developers who have already
mastered the basics of web design, but want to take their markup
further, making it leaner and more efficient, and semantically
richer. It is one thing to show the basics of HTML, but another
altogether to show how to streamline and optimize that markup
for a more efficient, more usable and accessible web site.

HTML Mastery does all this and more, showing all of the HTML
tags available, including less commonly used ones, where and
how to use them, and clever styling and scripting techniques that
you can employ to take advantage of them on your web site. It is
totally standards compliant, and up to date with modern web
design techniques. Forms and Tables are covered in particular
detail, as they are the most complex areas of HTML, where many
important elements are often overlooked.

In addition, the book also looks at some of the advanced
semantic tools available: an entire chapter is devoted to
Microformats, and a nod is given to XHTML 2.0 and Web
Applications 1.0—web standards of the future.

H
ain

e

CYAN YELLOW
MAGENTA BLACK

H
T
M

L M
A

ST
ER

Y An in-depth guide to
the advanced HTML elements

Covers XHTML and HTML, and
CSS and JavaScript™ tips and tricks

The future of markup, including
a look ahead at XHTML 2.0,
Web Applications 1.0, and the
Semantic Web

SHELVING CATEGORY
1. WEB DESIGN

Also Available

Paul Haine

HTML Mastery:
Semantics, Standards,

and Styling

Paul Haine

7656FM.qxp 11/16/06 11:33 AM Page i

HTML Mastery: Semantics, Standards,
and Styling
Copyright © 2006 by Paul Haine

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-765-1

ISBN-10 (pbk): 1-59059-765-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or

visit www.springeronline.com.

For information on translations, please contact Apress directly at
2560 Ninth Street, Suite 219, Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939,

e-mail info@apress.com, or visit www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com
in the Downloads section.

Credits

Lead Editor
Chris Mills

Technical Reviewer
Ian Lloyd

Editorial Board
Steve Anglin, Ewan Buckingham, Gary Cornell, Jason
Gilmore, Jonathan Gennick, Jonathan Hassell, James
Huddleston, Chris Mills, Matthew Moodie, Dominic

Shakeshaft, Jim Sumser, Keir Thomas, Matt Wade

Project Manager
Elizabeth Seymour

Copy Edit Manager
Nicole Flores

Copy Editors
Nicole Flores, Ami Knox

Assistant Production Director
Kari Brooks-Copony

Production Editor
Ellie Fountain

Compositor
Lynn L’Heureux

Proofreader
Linda Seifert

Indexer
Julie Grady

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

7656FM.qxp 11/16/06 11:33 AM Page ii

CONTENTS AT A GLANCE

Chapter 1: Getting Started . 3

Chapter 2: Using the Right Tag for the Right Job 21

Chapter 3: Table Mastery . 59

Chapter 4: Form Mastery . 87

Chapter 5: Purpose-Built Semantics:
Microformats and Other Stories 117

Chapter 6: Recognizing Semantics . 157

Chapter 7: Looking Ahead:
XHTML 2.0 and Web Applications 1.0 185

Appendix A: XHTML As XML . 193

Appendix B: Frames, and How to Avoid Them 205

Index . 217

7656FM.qxp 11/16/06 11:33 AM Page iii

7656FM.qxp 11/16/06 11:33 AM Page iv

CONTENTS

Chapter 1: Getting Started . 3

(X)HTML terminology . 4
Elements and tags . 4
Attributes . 5
Other terms you should know . 5

Divs and spans . 6
Block and inline elements. 7
id and class attributes . 8

XHTML vs. HTML . 9
Differences between XHTML and HTML . 9
Myths and misconceptions about XHTML and HTML . 10

XHTML has a greater/fewer number of elements than HTML. 10
XHTML has better error-checking/is stricter/is more robust than HTML 11
XHTML is more semantic/structural than HTML . 11
XHTML is leaner/lighter than HTML . 11
XHTML is required for web standards compliance 12

What’s all this noise about MIME types? . 12
Deciding between HTML and XHTML. 13

Anatomy of an XHTML document . 14
Doctype declaration . 14

Available doctypes . 15
Purposes of doctypes . 16

The <html>, <head>, and <body> elements . 16
The XML declaration . 17
Anatomy of an HTML document . 17

Summary . 18

7656FM.qxp 11/16/06 11:33 AM Page v

CONTENTS

vi

Chapter 2: Using the Right Tag for the Right Job 21

Document markup. 22
Paragraphs, line breaks, and headings . 22
Contact information . 24
Quotes . 24

Block quotes . 25
Inline quotes . 27

Lists . 28
Unordered and ordered lists . 29
The definition (is this) . 31

Links . 32
Relationship issues . 34
Targeting links. 37
Accessible linking . 39

Marking up changes to your document . 40
Presentational elements. 41

Font style elements . 42
The <hr>, <pre>, <sup>, and <sub> elements . 43

Phrase elements . 46
Emphasis . 46
Citations and definitions . 46
Coding . 47
Abbreviations . 49

Images and other media . 50
Inline images . 50
CSS background images . 51
Image maps . 51
Being objective . 55

Summary . 56

Chapter 3: Table Mastery . 59

Table basics . 61
Adding structure . 64
Adding even more structure . 66
Associating data with headers . 68
Abbreviating headers . 71
Almost-standards mode . 71
Table markup summary. 72

Styling tables . 72
Presentational attributes . 73
Spaced out . 74
Border conflicts . 75
Styling columns . 76
Striping table rows . 78
Scrollable tables . 80

7656FM.qxp 11/16/06 11:33 AM Page vi

CONTENTS

vii

Scripting tables . 81
Conditional comments . 81
Hovering with scripts . 82
Table sorting . 83

Summary . 85

Chapter 4: Form Mastery . 87

Form markup. 88
The form container . 88
Input . 90

text . 91
password. 91
file . 91
checkbox. 92
radio . 92
hidden . 93
reset . 93
submit . 94
button . 94
Other input types . 94

Other forms of input . 96
Menus . 97
Added structure . 100
Form usability . 102

Use the right tag for the right job. 102
Keep it short and simple . 103
Don’t make me think, don’t make me work, and don’t try to trick me 103
Remember that the Internet is global . 104

Styling forms . 104
Layout . 105
Form controls styling . 108
CSS as an aid to usability . 109

Scripting forms . 111
Validation . 111
Forms as navigation . 112
Manipulation of disabled controls . 113
Form event handlers . 113

Summary . 115

7656FM.qxp 11/16/06 11:33 AM Page vii

CONTENTS

viii

Chapter 5: Purpose-Built Semantics:
Microformats and Other Stories 117

Metadata . 118
Microformats . 121

hCard . 123
hCalendar . 129
“rel-” microformats . 133
VoteLinks . 135
XOXO . 136
XFN . 138
hReview . 141

The Semantic Web . 145
The Dublin Core Metadata Initiative. 147
Structured Blogging . 149
Other implementations . 152

Web 2.0 . 152
Summary . 154

Chapter 6: Recognizing Semantics . 157

Avoiding divitis . 158
Styling the body . 160
Rounded-corner menus . 165
News excerpts . 167
Footers . 169

Avoiding span-mania . 170
Intentional spans. 173

Avoiding classitis . 175
Semantic navigation . 177
The importance of validity . 181
Summary . 183

Chapter 7: Looking Ahead:
XHTML 2.0 and Web Applications 1.0 185

XHTML 2.0. 186
Other new tags and attributes in XHTML 2.0 . 187
XForms . 188
Preparing for XHTML 2.0 . 189

Web Applications 1.0 . 190
New tags and attributes in Web Applications 1.0 . 190
Web Forms 2.0 . 191
Preparing for Web Applications 1.0 . 191

Summary . 191

7656FM.qxp 11/16/06 11:33 AM Page viii

Appendix A: XHTML As XML . 193

Serving XHTML as XML . 194
Things to watch out for . 196

XHTML 1.1. 197
Modularization . 198
Ruby . 199

Simple Ruby markup . 200
Complex Ruby markup . 201

Summary . 201

Appendix B: Frames, and How to Avoid Them 205

(X)HTML frames . 207
Targeting links within frames . 208
Inline frames . 209
Alternatives to frames . 209
Frame-like behavior with CSS . 210
Future frames: XFrames . 212
Summary . 214

Index . 217

CONTENTS

ix

7656FM.qxp 11/16/06 11:33 AM Page ix

7656FM.qxp 11/16/06 11:33 AM Page x

ABOUT THE AUTHOR

Clawing his way from deepest, darkest Somerset upon his coming of age, Paul Haine found
himself ironically trapped for a further six years on the opposite side of the country in deepest,
darkest Kent, learning about web standards during the spare weeks between history lectures.
Now residing in Oxford’s famous East Oxford, he spends his days working as a web designer,
surrounded by a plethora of Apple-branded hardware, Nintendo kitsch, and a truly massive
collection of unusable grunge and pixel fonts.

Paul also runs his personal blog, joeblade.com, alongside his design blog, unfortunatelypaul.
com. He attends to both of these approximately every six months during the gap between
catching up with his blogroll and refreshing it to begin reading again.

7656FM.qxp 11/16/06 11:33 AM Page xi

7656FM.qxp 11/16/06 11:33 AM Page xii

ABOUT THE TECHNICAL REVIEWER

Ian Lloyd runs Accessify.com, a site dedicated to promoting web accessibility and providing
tools for web developers. His personal site, Blog Standard Stuff, ironically, has nothing to do
with standards for blogs (it’s a play on words), although there is an occasional standards-
related gem to be found there.

Ian works full-time for Nationwide Building Society, where he tries his hardest to influence
standards-based design (“To varying degrees!”). He is a member of the Web Standards
Project, contributing to the Accessibility Task Force. Web standards and accessibility aside, he
enjoys writing about his trips abroad and recently took a year off from work and all things
Web but then ended up writing more in his year off than he ever had before. He finds most
of his time being taken up by a demanding old lady (relax, it’s only his old Volkswagen
camper van).

Ian is married to Manda and lives in the oft-mocked town of Swindon (where the “boring lot”
in the UK version of The Office are from) next to a canal that the locals like to throw shop-
ping carts into for fun.

Ian is the author of Build Your Own Website the Right Way with HTML & CSS (SitePoint, 2006),
which teaches web standards–based design to the complete beginner. He has also been tech-
nical editor on a number of other books published by Apress, friends of ED, and SitePoint.

7656FM.qxp 11/16/06 11:33 AM Page xiii

ACKNOWLEDGMENTS

Thanks to everybody who’s put up with me during the last eight months of writing: Vikki,
Emma, Thom, Verity, my parents, the entire Britpack, and many others whom I’m no doubt
offending by not mentioning them specifically. Thanks to everyone at Apress and friends of
ED involved with this book, to Chris Mills for taking the project on in the first place, and to
Ian Lloyd for his technical review.

Special thanks to Leon, Ian, Helen, and gv for keeping my website running when I was too
busy writing.

7656FM.qxp 11/16/06 11:33 AM Page xiv

INTRODUCTION TO HTML FOR WEB
DESIGNERS: SEMANTICS AND

STANDARDS COMPLIANCE

In the beginning, there was HTML, and it was good. Then, after some time had passed, there
was a lot of HTML, and it was not very good at all. Then, after some more time had passed,
there was XHTML, and it was better, though often not as good as it could have been.

A few years ago, being a web designer didn’t require an understanding of HTML or CSS, or if
it did, it didn’t need to be a comprehensive understanding. A basic awareness would be
enough, and proficiency in software such as Photoshop and Dreamweaver was far more
important. Websites could be generated directly from images without ever viewing the
markup behind them, and the state of that markup—was it well written, was it lean, was it
efficient, was it meaningful—was not considered. In fairness, there wasn’t much of an alter-
native a few years ago; you made your websites with tables and spacer images for layout and
avoided semantic markup because support for web standards in browsers was simply not
there yet.

The result of this was that websites could often be heavy and slow, usually only worked prop-
erly in one browser, were complicated to update and maintain, required duplication of con-
tent for “print-friendly” versions, and search engines had a hard time indexing, making sense
of, and ranking them. This, in turn, led to a proliferation of shady search-engine-optimization
tricks, <meta> elements overstuffed with keywords, and per–search-engine entry pages.
Presentation (the look and feel) and behavior (usually JavaScript) were both mixed in with
content, and pages had no meaning or logical structure—the concern of the day was how
pages looked, not what they meant.

It was not a happy time to be a web designer.

Nowadays, the budding web designer needs to know a lot more about the building blocks of
his or her trade—needs to know how to write (X)HTML, needs to know how to write CSS, and
needs to know how to solve a layout bug in three versions of Internet Explorer plus Firefox,
Opera, and Safari (or better still, he or she needs to know enough to avoid those layout bugs
in the first place). Web designers have once again begun to learn how to write (X)HTML by

7656FM.qxp 11/16/06 11:33 AM Page xv

INTRODUCTION

xvi

hand, but the transition from building table-based sites in Dreamweaver’s design view to
hand-coding (X)HTML sites in Dreamweaver’s code view can be fraught with complications.

This book is aimed at web designers who may have just learned enough (X)HTML and CSS to
create a basic two-column layout, may have spent a lot of time in FrontPage or Dreamweaver
and now wish to learn more about the technology their sites are built upon, or may other-
wise consider themselves as being beyond the level of beginner and want to take their
markup skills further. The intention of this book is not to teach you (X)HTML from the
ground up; it is assumed that you have a basic knowledge already. The intention is also not
to focus on designing an entire site with CSS, though there will be several examples through-
out of applying CSS and JavaScript to your newly written, standards-based markup.

Rather, its intention is to explore (X)HTML in depth, to examine how to take full advantage
of the variety of different elements on offer, to help you in creating semantically rich and
structurally sound websites that you, your visitors, and passing search engines will all appre-
ciate. Along the way, you will examine how best to improve your text with phrase elements,
make judicious and informed use of presentational elements, create informative and useful
tables and forms, and discover how there can be so much more to enhancing your content
than simply hitting the I or B buttons in your design editor of choice.

Conventions
If I refer to HTML or XHTML, it means the reference is specific to HTML 4.01 or XHTML 1.0,
respectively. If the reference is relevant to both, I will write (X)HTML.

When referring to “modern browsers,” this means browsers that are standards compliant (or as
near as they can be). At the time of writing, this includes Opera, Firefox (and other browsers,
such as Camino or Mozilla, that use the same rendering engine), Safari, and Internet Explorer 7.1

It is assumed that modern browsers will continue to be standards compliant as future versions
are released.

Important words or concepts are normally highlighted on the first appearance in bold type.

Code is presented in fixed-width font.

Sometimes code won’t fit on a single line in a book. Where this happens, I use an arrow like
this: ➥.

This is a very, very long section of code that should be written all ➥

on the same line without a break.

So, on with the show.

1. Internet Explorer 7 is included tentatively, as at the time of writing the final release has only just been
made public. Although its standards support has increased, it doesn’t appear to be at quite the same
level as Opera or Firefox.

7656FM.qxp 11/16/06 11:33 AM Page xvi

7656Ch01.qxp 11/16/06 11:08 AM Page 1

7656Ch01.qxp 10/26/06 9:42 PM Page 2

1 GETTING STARTED

7656Ch01.qxp 10/26/06 9:42 PM Page 3

Mastering HTML isn’t just about knowing every tag that’s available and what it means.
Equally important is knowing about HTML—that is, understanding what tags and attributes
are and how to use them, grasping the differences between HTML and XHTML, knowing
what a doctype is and how to read it, and so on. Knowing about HTML will not only help
you to understand it, but also help others understand you when you’re discussing it.

This chapter consists of three main sections. The first section covers the terminology to
use when talking or writing about HTML. The second section examines the differences
between HTML and XHTML, two versions of the same language, and investigates some
common misconceptions about both. Finally, the last section breaks a typical XHTML and
HTML document into pieces, and looks at what each piece means and what it does.

If you’re already familiar with these topics, then you can skip to the next chapter. However,
I do strongly recommend reading this chapter as a refresher—it won’t take too long to get
through, and it’s full of useful information. Also, knowing more about HTML than your
peers will make you look stylish and cool, and who doesn’t want that?

(X)HTML terminology
If you want to create expert (X)HTML and impress your friends and colleagues, it isn’t
enough to only walk the walk; you must also talk the talk. Using the correct terminology is
important both to avoid confusion and to aid your own and others’ understanding. For
instance, if someone refers to the “title tag,” is he or she referring to the title of the docu-
ment that displays in the browser title bar, or to a tooltip of information (the title attrib-
ute) that displays when the mouse cursor hovers over an element (an image or link, usually)?
Or perhaps the person is referring to a text heading that appears on the page, most likely in
an <h1> element. There are tags, there are elements, and there are attributes; and each is an
entirely different affair.

To make sure that we all have the same level of understanding before moving ahead, in
this section I explain what each of the terms you’ll frequently encounter when discussing
(X)HTML refers to. I also discuss some other common terms that can cause confusion,
including div, span, id, class, block, and inline.

Elements and tags

An element is a construct consisting (usually) of an opening tag, some optional attributes,
some content, and a closing tag. Elements can contain any number of further elements,
which are, in turn, made up of tags, attributes, and content. The following example shows
two elements: the <p> element, which is everything from the first opening angle bracket
(<) to the very last closing angle bracket (>), and the element, which encompasses
the opening tag, the closing tag, and the content in between.

<p class="example">Here is some text, some of which is
emphasized</p>

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

4

7656Ch01.qxp 11/16/06 11:08 AM Page 4

A tag indicates the start and end of an element. The opening tag can contain multiple
attributes, but it cannot contain other elements or tags, while the closing tag cannot con-
tain anything but itself. In the preceding example, there are four tags: an opening <p>, an
opening , a closing , and a closing </p>.

Not all elements have closing tags. For example, ,
, <meta>, and <hr> are referred
to as self-closing elements, empty elements, or replaced elements. Such elements are
not container tags—that is, you would not write <hr>some content</hr> or
some con-
tent</br>—and any content or formatting1 is dealt with via attribute values (see the next
section for more information). In HTML, a self-closing element is written simply as ,

, <meta>, or <hr>. In XHTML, a self-closing element requires a space and a trailing slash,
such as ,
, <meta />, or <hr />.

Attributes

Attributes appear within tags, and they can only contain the value of the attribute, for
instance:

<p class="example">Here is some text, some of which is
emphasized</p>

This example shows the class attribute. An attribute can contain multiple, space-separated
values, which is useful if you need to apply different classes to one element. For instance, if
you have two styles, one named example and another named reference, you can apply
them both to a paragraph like so:

<p class="example reference">

Other attributes you may have already encountered might include alt, src, and title, but
there are many more attributes, some element-specific (like the selected attribute used
with the <option> tag) and some not (like the class and id attributes). If there is one thing
I want people to take away from this book, it is this: there is no such thing as an alt tag.

Other terms you should know

With the descriptions of elements, tags, and attributes safely behind us, let’s turn our atten-
tion to a few other terms you should know when writing (X)HTML: div, span, id, class,
block, and inline. Like elements, tags, and attributes, you will often encounter these items

Watch out for the <script> element: it is a container, so it has a required closing tag,
even though it can remain empty of content and uses the src attribute to reference
external scripts. This issue is made more complex by the fact that Opera (version 9 and
above) and Safari both support a self-closed <script>, so the element will work, but it
will remain invalid, and unsupported in other browsers.

GETTING STARTED

5

1

1. Excluding formatting with CSS.

7656Ch01.qxp 11/16/06 11:08 AM Page 5

in your work as a web designer, and it’s just as important to have a good understanding of
what they are and how they function.

People are often confused by these terms because they misunderstand their purpose or
make mistakes when associating them (e.g., associate the id attribute only with the <div>
tag and the class attribute only with the tag).

Divs and spans
Divs and spans are two tags that, when used well, can help give your page a logical structure
and some extra hooks to apply any CSS or DOM scripting that you might need later. When
used badly, they can litter your document unnecessarily and make your markup, styling, and
scripting needlessly complicated. I cover these two tags again in more depth in Chapter 6,
but in this section I simply outline the main differences between and uses of them.

A div (short for “division”) is used for marking out a block of content, such as the main
content block of your document, the main navigation, the header, or the footer. As such,
it is a block element. It can contain further elements, including more divs if required, but
it cannot be contained within an inline element. For example, a simple website may have
a header, a main column of content, a secondary column of content, and a footer. The
(X)HTML for this could look like the following:

<div id="header">
...

</div>
<div id="mainContent">

...
</div>
<div id="secondaryContent">

...
</div>
<div id="footer">

...
</div>

These content blocks can then be positioned and displayed as required using CSS.

A span is used for marking out sections within a block element and sometimes inside
another inline element. It is an inline element, just the same as , , or <a>,
except without any semantic meaning—it is simply a generic container. It can itself contain
further inline elements, including more spans. For example, say you wish to color the first
two words of a paragraph red, keeping the rest of the paragraph black. You can use a
 for this:

<p>The first two words of this ➥

paragraph can now be styled differently.</p>

A span cannot contain a block element—that is, you cannot place a <div> within a
and expect it to work the way you want.

Divs and spans are also used extensively in microformats, which I cover later in Chapter 5.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

6

7656Ch01.qxp 11/16/06 11:08 AM Page 6

Block and inline elements
To oversimplify things a little, every element in (X)HTML is contained within a box, and
that box is either a block-level box or an inline-level box. You can see where the box exists
by applying a border or outline with CSS. Visually, the difference between the two is as
shown in Figure 1-1.

Figure 1-1. The box model, applied to block and inline boxes

A block-level box, such as a div, a paragraph, or a heading, begins rendering on a new line
in the document and forces a subsequent element to start rendering on a new line below.
This means that in an unstyled document, block elements stack vertically and line up along
the left side of their containing element. They also expand to fill the width of their con-
taining element. It is not possible to place two block elements alongside each other with-
out using CSS.

An inline-level box, such as a or an , begins rendering wherever you place it
within the document and does not force any line breaks. Inline elements run horizontally
rather than vertically, and they do so unless you indicate otherwise in your CSS or until
they are separated by a new block element. They take up only as much space as the con-
tent contained within them. It is not possible to stack two adjacent inline elements one on
top of the other without using CSS. Furthermore, when an element is inline, if you apply
margin-top/bottom or padding-top/bottom to it, then the value will be ignored—only
margins and padding on the left and right have an effect. Figure 1-2 shows what happens
to the outline when I apply 20 pixels (px) of padding to the spans in this example.

Figure 1-2. Inline elements with extra padding

GETTING STARTED

7

1

7656Ch01.qxp 11/16/06 11:08 AM Page 7

As you can see, although the box itself has expanded 20px in all directions, the top and
bottom padding does not affect any surrounding element.

Although you can use CSS to display a block element as inline and vice versa, be aware
that this does not change the meaning of each element; you will still be unable to place a
div within a span.2

id and class attributes
The id attribute is used to identify elements and mark up specific functional areas of a
website, and the class attribute is used to classify one or more elements. These important
attributes help you target elements when it comes to styling or scripting. I refer to both of
these attributes throughout the book, but for now all you need to know is that a specific
id attribute value can be used just once per page, whereas a class attribute value can be
used multiple times (the attributes themselves can be used multiple times per page). For
example, say you begin a document with this:

<body id="homepage">

You would then not be able to use an id attribute value of homepage anywhere else on the
same page. However, if you do this:

<body class="homepage">

then you are free to use the class attribute value of homepage as many times as you like
throughout the same page, but bear in mind that it still applies the same CSS, no matter
what tag you apply it to.

When using class and id attributes, it can be very tempting to assign values based on how
you want the element to look, rather than what it is, but it is best to avoid doing so. For
example, instead of values such as

<div id="rightColumn">
<strong class="redText">
<p class="big">

There’s a lot more to say about the differences between block and inline elements and
their respective structures and operations. For a more detailed discussion on this subject, I
recommend reading the excellent “Block vs. Inline” article series by Tommy Olsson
(www.autisticcuckoo.net/archive.php?id=2005/01/11/block-vs-inline-1), and for
a visual explanation of where the padding, margins, and borders of a box lie, have a look
at Jon Hicks’s 3D CSS Box Model (www.hicksdesign.co.uk/boxmodel).

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

8

2. The ins and del elements are either block or inline depending on context. If you place a block within
either element, they will act as block elements, but if you place them within an inline element or a block
element, they will act as inline elements. I talk about these two elements again in the next chapter.

7656Ch01.qxp 11/16/06 11:08 AM Page 8

you should instead use values such as

<div id="secondaryContent">
<strong class="important">
<p class="introduction">

Why? Simply because one day you may find you need that element to be blue
instead of red, or you may want to move your secondary content from the right column to
the left—and when that happens, your class or id value will make no sense.

You can also apply an id and a class to one element:

<body id="homepage" class="page">

To reference these attribute values in your CSS, you type the value and then prefix an id
with a hash mark (#) and classes with a period (.), like this:

#homepage {
background: blue;

}

.page {
color: white;

}

These two attributes are not tied to a specific tag; any tag whatsoever can be given either
or both attributes.

XHTML vs. HTML
The question of whether to use XHTML or HTML will often not even come up in an aver-
age web project; most web designers these days will naturally gravitate toward XHTML, as
it is perceived as being new, advanced, and the “X” makes it sound cool. The truth is,
XHTML isn’t as different from HTML as people think, and the purpose of this section of the
chapter is to discuss exactly how XHTML differs from earlier versions of HTML, debunk
some myths and misconceptions about XHTML and HTML, examine the issues behind
MIME types, and cover when it is (and isn’t) appropriate to use XHTML over HTML.

Differences between XHTML and HTML

There are several rules that apply to XHTML that do not apply to HTML. These are fairly
straightforward and you may know some (or all) of them already, but to reiterate:

Note that in XHTML, you cannot begin an id attribute with a number, so something like
<body id="3columns"> fails validation, but <body id="columns3"> is OK.

GETTING STARTED

9

1

7656Ch01.qxp 11/16/06 11:08 AM Page 9

The <html>, <head>, and <body> tags are all required in XHTML.

The <html> tag must have an xmlns attribute with a value of http://www.w3.org/
1999/xhtml.

All elements must be closed. I touched upon this earlier, but just remember that an
opening tag must have either an equal closing tag (if it’s a container tag) or a self-
closing space-plus-slash.

All tags must be written in lowercase.

All attribute values must be quoted with either single quotes or double quotes.
Thus, class=page is invalid but class="page" and class='page' are both fine.

All attributes must have values. Some attributes, such as the selected attribute
used with the <option> tag, could be written in a shortened form in HTML—that is,
<option selected>data</option> would be valid. In XHTML, however, you must
write <option selected="selected">data</option>.

Ampersands should be encoded. That is, you should write & instead of just &.
This is true wherever the ampersand is: in your content or in a URL.

Myths and misconceptions about XHTML and HTML

When XHTML first gained prominence some years ago, it was seen by many the “savior” of
the Web—something that could take us away from the tag soup of old-style, table-based
HTML markup. Bringing with it more formality and a strict set of rules, XHTML was
expected to be easier to write, easier to maintain, and in all ways better than HTML.

In fact, aside from the differences mentioned in the preceding section, XHTML is not so
very different from HTML, and what matters more than which version you use is how you
write it. The sections that follow present some myths and misconceptions you may have
heard and the truth behind them.

XHTML has a greater/fewer number of elements than HTML
Yes—XHTML has both a greater number and a fewer number of elements than HTML,
depending on what doctype you’re writing to. If we’re just comparing HTML 4.01 Strict to
XHTML 1.0 Strict, then there are fewer elements in the latter than in the former, as ele-
ments that were deprecated in HTML 4.01 Strict have been removed from XHTML 1.0
Strict: <dir>, <menu>, <center>, <isindex>, <applet>, , <basefont>, <s>, <strike>,
<u>, <iframe>, and <noframes>. With the possible exception of <iframe> (which is often
used to include advertisements on a page), you’re unlikely to need any of these elements
anyway, as they all have better alternatives in the form of either a more meaningful ele-
ment (e.g., using in place of <s> and <strike>, which I talk more about in the next
chapter) or CSS (e.g., using the CSS font property in place of the element). So,
comparing Strict to Strict, the answer is there are fewer elements in XHTML 1.0, but
because they were all deprecated in HTML 4.01 anyway, it shouldn’t make any difference
in your coding practices.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

10

7656Ch01.qxp 11/16/06 11:08 AM Page 10

There’s also a difference when you look at XHTML 1.1, which introduces the Ruby elements3

typically used in East Asian typography. It drops the name attribute altogether and replaces
the lang attribute with xml:lang. XHTML 1.1 must also be served with a MIME type of
application/xhtml+xml—more on that later.

XHTML has better error-checking/is stricter/is more robust
than HTML
Yes and no—the answer depends on what you’re doing. If you’re serving your XHTML
pages with a MIME type of text/html, then your markup is no more robust than HTML is,
and browsers will often try to correct any errors in your markup for you and attempt to
display what they assume you mean. If you’re serving your XHTML with a MIME type of
application/xhtml+xml, then the slightest error will cause your pages to break and usu-
ally only display an XML parsing error. I cover more about MIME types later in the chapter.

XHTML is more semantic/structural than HTML
No. As mentioned earlier, it’s not the technology you use, but how you use it that counts.
You can create the worst mess of markup imaginable with as many nested layout tables,
line break tags, and semantically meaningless elements as you like, and it can still be a
valid XHTML document. Similarly, you can create the purest, cleanest, most semantic page
you’ve ever seen, and it can still be written in HTML 4.01.

XHTML is leaner/lighter than HTML
Not so. Because a valid XHTML document requires quoted attribute values, closing tags for
every element, and a whole bunch of tags and attributes in the head of the page, an
XHTML page actually ends up being “heavier” than an equivalent HTML page. For instance,
Anne van Kesteren’s home page (http://annevankesteren.nl) begins like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN">
<!-- It's valid, sure. -->
<title>Anne's Weblog</title>

Immediately after the title are some linked-in style sheets and scripts, and then it’s on with
the document—no <html> tag, no <head> tag, and no <body> tag, either open or closed. To
write the same markup in XHTML would require all of these. It is true that an XHTML doc-
ument written with web standards in mind will use less overhead than an old-style, tag-soup
HTML document, but that’s a difference in the web author’s methodology, rather than a
difference in the version of HTML used.

All of the elements just mentioned are permitted in Transitional doctypes, along with
some attributes such as the target attribute used on <a> elements.

GETTING STARTED

11

1

3. See www.w3.org/TR/ruby for more information.

7656Ch01.qxp 11/16/06 11:08 AM Page 11

XHTML is required for web standards compliance
False. As (I hope) I’ve made clear by now, writing XHTML in itself is not necessarily enough.
Whether you write HTML or write XHTML, the important part is that you write it well.

What’s all this noise about MIME types?

Ah, the MIME types. I’ll warn you now that this is the sort of incendiary subject that can
cause a lot of upset when you start discussing it, and words such as “evil” and “harmful”
start being thrown around. Nevertheless, I attempt to sum up the issue in this section dis-
passionately, sensibly, and with a minimum of fuss. Before I continue, here are just two
things to bear in mind:

For the average web author (or manager of web authors), the topic of MIME types
will rarely, if ever, directly affect either them or the visitors to their website.

Nonetheless, it is worth knowing about.

So, here we go.

Although they share a common vocabulary, XHTML has several advantages over HTML,
including the following:

XHTML has the capability to incorporate other XML-based technologies, such as
MathML, into your document.

XHTML that is not well-formed will be immediately spotted, because browsers will
refuse to display the page and will display an error instead.

XHTML provides a guarantee of a well-formed4 document.

None of the preceding points are true, however, unless you are serving XHTML with a
MIME type of application/xhtml+xml. If your web server is serving your web pages with
a MIME type of text/html (practically all web servers will do so), then you will not be tak-
ing full advantage of XHTML.

So, this being the case, you may choose to simply configure your server to serve your
XHTML pages with the correct MIME type. However, it’s not that easy, for two reasons:

Internet Explorer does not support pages served in such a way, and it will attempt
to download them instead of displaying them.

Your pages may no longer work.

The first problem can be solved through content negotiation5—that is, serving one MIME
type to modern browsers and another to Internet Explorer. The second problem can be
caused by a number of reasons. An invalid XHTML document will now no longer display at

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

12

4. I should point out that “well-formed” does not mean the same as “valid.” For instance, a tag with an
attribute mymadeupattribute="true" is well-formed, but still invalid.

5. For a detailed explanation of content negotiation, see the article “MIME Types and Content
Negotiation” by Gez Lemon at http://juicystudio.com/article/content-negotiation.php.

7656Ch01.qxp 11/16/06 11:08 AM Page 12

all, resulting in an error message. Even if your document is valid, though, that’s not the
only problem you may run into:

Comments in <style> and <script> tags of the <!-- --> form that you may have
been using to hide your CSS or scripts from old browsers will now be treated liter-
ally as comments, so your CSS or scripts will appear not to exist.

Scripts that use document.write() will no longer work.

Your CSS can be interpreted differently, depending upon how you wrote it in the
first place.

The smallest validation error will cause your pages to break and become unusable, with
the error visible for the entire world to see. This is particularly a cause for concern if you
have an open comments system or are using a content management system (CMS) that
doesn’t always generate correct markup. All it takes is for one unencoded ampersand to
slip through and your pages will break completely.

So, that’s the issue of MIME types in a nutshell. To some people it doesn’t matter; to oth-
ers it matters a lot. Essentially, though, it’s like this: your XHTML pages should be served
with the application/xhtml+xml MIME type, doing so may cause unforeseen complica-
tions, and continuing to serve your pages with a text/html MIME type will probably be OK
for the foreseeable future, but just be aware that you’re not taking full advantage of all of
XHTML’s features when you do so.

My personal preference is to write XHTML served as text/html, despite the issues just
noted. This is for a number of reasons, not least being that employers and clients have a
tendency to insist upon it for marketing purposes. I also prefer the structure, knowing that
I must close all of my tags and that I must quote all of my attribute values. I can do all of
this in HTML if I choose, but with XHTML there’s the element of compulsion that I believe
helps me write better markup.

Deciding between HTML and XHTML

So which should you use, HTML or XHTML? It depends. The World Wide Web Consortium
(W3C) recommends writing XHTML over HTML6 to better enable you to convert your doc-
uments to XHTML 2 (covered in Appendix A) when it arrives, so if this is something you
plan to do, write XHTML now. If you find yourself having to take into consideration other
factors, such as legacy applications or CMSs that are producing HTML 4 (unquoted attrib-
utes, uppercase tags, etc.), then it makes little sense to wrap that output in a template with
an XHTML doctype and you should use HTML 4 in this case. If you need to save on band-
width, use HTML 4. If you need to use XML, use XHTML . . . and so on.

Ultimately, it’s a judgment call entirely dependent on your own circumstances. Just don’t
make the mistake of thinking that by writing XHTML you’ve done all you need to do to
create a professional, well-structured, semantically meaningful document.

GETTING STARTED

13

1

6. See the article “HTML Versus XHTML” at www.webstandards.org/learn/articles/askw3c/oct2003.

7656Ch01.qxp 11/16/06 11:08 AM Page 13

Anatomy of an XHTML document
Finally, let’s look at how a strict XHTML 1.0 document is laid out:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Our title</title>

</head>
<body>
<p>Our content</p>

</body>
</html>

Let’s now go through this markup one line at a time.

Doctype declaration

First we see a doctype declaration. A doctype declaration provides an indication as to
what Document Type Definition (DTD) you’re going to be writing your markup to. A
DTD is basically a page detailing the rules and grammar of the markup. It can look a little
daunting, but let’s break it down and examine each piece. The doctype starts off like this:

<!DOCTYPE

Nothing much more to say here; this is just how a doctype begins. The root element of the
document that will appear after the doctype declaration—the <html> element—needs to
be specified immediately after the opening of the declaration:

<!DOCTYPE html

Note that we can use html or HTML, depending on the version of (X)HTML we’re writing to
and how we’re writing it. For all XHTML doctypes, the root element should be in lower-
case, but for HTML doctypes the root element may be uppercase if the rest of your tags
are written so.

Following that, we have the word PUBLIC:

<!DOCTYPE html PUBLIC

This indicates that the DTD we’re about to reference is publicly available. If the DTD was
private, then we would use SYSTEM instead (as in “a system resource,” probably a locally
held resource somewhere on your network).

Next we have the Formal Public Identifier (FPI), which describes details about both the DTD
and the organization behind the DTD. The FPI is enclosed in quotes and uses two forward
slashes as a separator:

"-//W3C//DTD XHTML 1.0 Strict//EN"

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

14

7656Ch01.qxp 11/16/06 11:08 AM Page 14

These four fields have the following meanings:

The opening – character means that the owner of the DTD isn’t an organization
registered by the International Organization for Standardization (ISO); the W3C is
not. If the owner was registered by ISO, you would use + in place of -.

W3C indicates that the owner of the DTD is the W3C.

DTD XHTML 1.0 Strict is a type or class (DTD) followed by a description (XHTML
1.0 Strict), which is broken down into two further sections: a label (XHTML) and a
document type definition (1.0 Strict). The class and description are known respec-
tively as the Public Text Class (PTC) and the Public Text Description (PTD).

The language of the DTD is EN, which is the two-character language code for
English.

Finally, we have a URL that points to the location of the DTD. This URL is, like the FPI,
declared within double quotes:

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"

And that, basically, is the anatomy of a doctype.

Available doctypes
There are three XHTML 1.0 doctypes available, plus one XHTML 1.1 doctype. The XHTML
1.0 doctypes are Strict, Transitional, and Frameset (to be used only when you are using
frames to lay out your documents), and they differ only in the FPI and URL:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

The XHTML 1.1 doctype also differs only in the FPI and URL, and it comes in only one variant
rather than Strict and Transitional versions:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

There is also a doctype for XHTML Basic, a stripped-down version of XHTML used (mostly
theoretically at the time of this writing) for pages designed for mobile devices such as
mobile phones:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
"http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">

GETTING STARTED

15

1

7656Ch01.qxp 11/16/06 11:08 AM Page 15

Purposes of doctypes
Doctypes in (X)HTML serve two important purposes. First, they inform user agents and val-
idators what DTD the document is written to. This action is passive—that is, your browser
isn’t going and downloading the DTD every time a page loads to check that your markup
is valid; it’s only when you manually validate a page that it kicks in.

The second and, for practical purposes, most important purpose is that doctypes inform
browsers to render documents in standards mode rather than quirks mode. This is
known as doctype switching, and it was included in browsers as a way of determining
how to render a document, the assumption being that if an author has included a doctype,
then that author knows what he or she is doing, and the browser tries to interpret the
strict markup in a strict way (i.e., standards mode). The absence of a doctype triggers
quirks mode, which renders the markup in old and incorrect ways, the assumption here
being that if the author hasn’t included a doctype, then he or she probably is not writing
standard markup, and therefore the markup will be treated as if it has been written in the
past for buggier browsers.

The <html>, <head>, and <body> elements

Following the doctype is the opening <html> tag with an xmlns attribute. This attribute is
used to declare an XML namespace, which describes which markup language is being
used. The value used in this example is http://www.w3.org/1999/xhtml, and it should be
present in any XHTML document.

After the root <html> element is open, we have the <head> of the document, which contains
a <title> and can also contain <style>, <script>, <meta>, and <link> elements. <title> is
the only compulsory element within the head, and it will be displayed in your browser’s title
bar. The document title is an oft-neglected area of the document; you’ve surely seen pages
with the title “Untitled Document” before. This is unfortunate, as given proper care and
attention, the document title can provide you and your users with many benefits: a better
search engine ranking for you and greater usability for users.

For example, try opening several Untitled Document windows and then switching
between them after minimizing them—can you tell which is which? A similar problem
can occur when a company or website name is placed before the actual page title.

Note that it’s possible to style the <html> element in your CSS as you would style any
other element; however, this can yield sometimes unpredictable results. For instance,
you’ll encounter problems if you try to give both the <html> and <body> elements a
background image, because Internet Explorer includes the browser scrollbars as part of
the web page (to allow for CSS-styled scrollbars) and you may find background images
or colors dipping underneath the scrollbar and appearing on the other side.
Furthermore, styling the <html> element can cause browsers to treat the body element
differently—as a <div>, rather than as the <body>.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

16

7656Ch01.qxp 11/16/06 11:08 AM Page 16

Following the closing <head> tag is the opening <body> tag, which can contain any non-
head-specific markup: paragraphs, lists, images, and so on. The <body> tag has several
presentational attributes: background, text, link, vlink, and alink, which are used to set
the document’s background color, text color, link color, visited link color, and active link
color, respectively. All of these attributes have been deprecated, and their effects should
be created with CSS instead. The background-color, color, a:link, a:visited, and
a:active properties and pseudo-classes are appropriate.

The closing <body> tag is followed immediately by the closing <html> tag. That’s an XHTML
document in its entirety.

The XML declaration

Before I go on, any purists reading this section will have noticed that I’ve left out a line that
looks something like this:

<?xml version="1.0" encoding="utf-8"?>

If in use, this line would appear directly before the opening doctype line. It is known as an
XML declaration,7 and its purpose is to declare that the document is an XML document,
the version of XML, and also (optionally) the character set the document has been
encoded in. While the W3C recommends including this declaration (but that it is optional),
doing so will have a number of adverse effects, the worst of which is causing Internet
Explorer to switch to quirks mode—anything appearing before the doctype apart from
whitespace will cause this to happen. Therefore, it’s best to leave this line out.

Anatomy of an HTML document

Now let’s look at the same template, but written in HTML 4.01 Strict instead of XHTML 1.0
Strict:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<title>Our title</title>
<p>Our content</p>

That’s not a misprint—the preceding code is actually all you need for a document written
in HTML. The <html>, <head>, and <body> tags do not need to be explicitly created, but
you must still write your markup as if they are there—because they are. You can look at
such a document in a JavaScript DOM inspector, or write some CSS rules for the <body>
element, and you’ll see that the elements are there even though you haven’t written them
in, so you must ensure that any head-specific markup such as <meta> or <link> tags
appear before any of your <body> markup begins. Thus, the following markup is valid
because the head and body areas can be inferred by the context:

GETTING STARTED

17

1

7. The XML declaration and the doctype are collectively known as an XML prolog.

7656Ch01.qxp 11/16/06 11:08 AM Page 17

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<title>Our title</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<p>Our content</p>

But the following markup is not valid, because the <meta> element has been included after
the <p> element has already indicated that the head area has ended and the body area has
begun:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<title>Our title</title>
<p>Our content</p>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

Summary
Hopefully, this chapter has helped you gain an understanding of the vocabulary used to
describe the markup and general structure of (X)HTML, and cleared up any misconcep-
tions you may have held about it. It also provided you with a breakdown of a basic
(X)HTML document, so you can now recognize the constituent parts. Knowing all of this
isn’t enough to master the language, but it will certainly help you.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

18

7656Ch01.qxp 11/16/06 11:08 AM Page 18

7656Ch01.qxp 11/16/06 11:08 AM Page 19

7656Ch02.qxp 11/16/06 11:30 AM Page 20

2 USING THE RIGHT TAG FOR
THE RIGHT JOB

7656Ch02.qxp 11/16/06 11:30 AM Page 21

When building websites, it’s very easy to get by on only a few tags: a heading here and
there, some paragraphs and lists, and a sprinkling of and and a few divs and
spans to add some body to the <body>. However, this approach ignores the many other
tags available that can allow you to enhance your pages with scripts and styles without
needing to clog up the works with classes and semantically meaningless tags. In this
chapter, we’ll examine a number of these additional tags and how to use them.

I’ve divided this chapter into four loosely related sections:

Document markup: This catchall section covers paragraphs, headers, lists, links,
addresses, deletions and insertions, and quotes.

Presentational elements: This section covers elements that do not have any
semantic meaning, such as <i> and <tt>.

Phrase elements: In this section, we’ll look at inline elements that convey seman-
tic meaning, such as <cite>, <kbd>, and <acronym>.

Images and other media: The and <object> tags, image maps, CSS back-
ground images, and embedded media are examined here.

Throughout the chapter you’ll find examples of how you can take advantage of these
semantics and structures to add functionality and styling to your web pages using unob-
trusive DOM Scripting and CSS.

Document markup
First, let’s look at the general category of document markup elements, including paragraphs,
line breaks, and headings; how to display contact information, quotes, lists, and links; and
how to mark up changes to your documents.

Paragraphs, line breaks, and headings

Perhaps the markup you’ve used most often when writing web pages is <p>. There isn’t much
to be said about <p>: it is simply used to mark up a paragraph. Yet this humble element is
often abused by WYSIWYG software as a quick and dirty spacer. You have likely seen markup
such as the following before, where an author has pressed the Enter key a few times:

<p> </p>
<p> </p>
<p> </p>
<p> </p>

Due to their complexity, tables and forms (and all related markup) are covered in their
own chapters later in the book.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

22

7656Ch02.qxp 11/16/06 11:30 AM Page 22

This is a prime example of (X)HTML being co-opted into acting in a presentational manner.
We find here multiple, pointless paragraphs, with a nonbreaking space entity inside due to
some browsers not displaying empty elements, but the effect should really be achieved
with CSS. A quick way of adding some space beneath your content is to enclose the con-
tent in a <div>, like this:

<div id="maincontent">
<p>Your content here.</p>

</div>

Then add some padding to the bottom of the #maincontent section with CSS:

#maincontent { padding-bottom: 3em; }

I use em as a unit of measurement here rather than px, so that the spacing beneath the
paragraphs of content will scale appropriately when users change the text size in their
browsers.

Similarly, the
 tag for line breaks is often used to add a few lines of space here and
there when it should be used simply to insert a single carriage return (e.g., when format-
ting a poem or code samples—but then perhaps you should be using <pre>, which is dis-
cussed further in the section “The <hr>, <pre>, <sup>, and <sub> elements”).

Heading tags are used to denote different sections of your web page or document, and
they allow various user agents (such as screen reading software or some web browsers
such as Opera) to easily jump between those sections. There are six heading levels, <h1>
through to <h6>, with <h1> being considered the most important heading and <h6> the
least important (see Figure 2-1). Having six heading levels available to you means that you
should never need to write <div id="heading"> or <p>heading</p>.

Figure 2-1.
The six heading levels,
in all their unstyled glory

USING THE RIGHT TAG FOR THE RIGHT JOB

23

2

7656Ch02.qxp 11/16/06 11:30 AM Page 23

So, with all these exciting different headings to choose from, where should you start and
what should you consider the “most important” heading? This largely depends on the con-
tent of your site. If you are building a blog or a similar article-based website, then the title
of each blog entry or article could be your <h1>. Alternatively, you may decide that your
website brand (e.g., eBay, Amazon.com, etc.) should be considered the most important
heading, and set that to be your <h1>.

It’s possible to automatically generate a rudimentary table of contents (TOC) for a single
document by using JavaScript to pull out the headers in a page, as described by JavaScript
guru Peter-Paul Koch at www.quirksmode.org/dom/toc.html. Although this rudimentary
TOC lacks the permanence and scope of a TOC for a collection of documents, it does have
the advantage of dynamically updating when you insert or remove a header.

Contact information

The <address> tag is used for marking up contact information—nothing more, nothing
less. The HTML specification is very specific about the <address> tag’s use: it is not for dis-
playing contact information for just anybody or anything; rather, it is used to display con-
tact information related to the document itself. For example, say you are maintaining a list
of contact details for a society membership directory. In this case, use of the <address>
tag—once per each member—would not be appropriate. However, if you also had on that
page the webmaster’s contact details, or the contact details of whoever maintains the
directory, then the <address> tag would be appropriate to use for just that person. It
doesn’t have to specifically describe a physical, brick-and-mortar location—the example in
the HTML specification, for instance, contains links to personal pages and a date:

<address>
Dave Raggett,
Arnaud Le Hors,
contact persons for the ➥

W3C HTML Activity

Date: 1999/12/24 23:37:50

</address>

The <address> element is a block-level element, and as such it can contain only inline ele-
ments—no paragraphs, lists, or divs. This element is also of use when using the hCard
microformat, which I discuss in Chapter 5.

Quotes

HTML provides you, the web author, with two distinct ways of marking up quotations, one
for block-level quotes and the other for inline quotes. However, I only recommend the use
of the former method: the <blockquote> element.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

24

7656Ch02.qxp 11/16/06 11:30 AM Page 24

Block quotes
<blockquote> is another tag that has historically been used for its presentational effect
rather than its semantic meaning or structural relevance. Indeed, this misuse is even refer-
enced in the HTML specification:1

As you can see, the <blockquote> tag has been so commonly used to indent text instead
of acting as a container for quotes that the W3C recommends against user agents auto-
matically including quote marks and has taken the unusual step of actually deprecating
this misuse. How this can be enforced I can only guess.

The <blockquote> tag also allows for a cite attribute to allow the author to reference
the source of the quote (usually in the form of a URL, but it can be any form of citation,
such as the name of another author or the title of a movie). User agent support for uti-
lizing this hidden information is currently poor. While Firefox will allow you to right-click
a <blockquote> element, select Properties, and see the citation information in a pop-up
alert box (see Figure 2-2), most other user agents simply ignore it.

Figure 2-2. Firefox displays the cite and title attributes of a blockquote. It’s not an intuitive
method of displaying the information, but at least it’s there.

“We recommend that style sheet implementations provide a mechanism for inserting
quotation marks before and after a quotation delimited by BLOCKQUOTE in a manner
appropriate to the current language context and the degree of nesting of quotations.

“However, as some authors have used BLOCKQUOTE merely as a mechanism to indent
text, in order to preserve the intention of the authors, user agents should not insert quo-
tation marks in the default style.

“The usage of BLOCKQUOTE to indent text is deprecated in favor of style sheets.”

USING THE RIGHT TAG FOR THE RIGHT JOB

25

2

1. See www.w3.org/TR/html4/struct/text.html#h-9.2.2.

7656Ch02.qxp 11/16/06 11:30 AM Page 25

We can retrieve the citation information and display it on the client side in at least two
ways. The first is with CSS, and the second is with some DOM Scripting.

Here’s a CSS way:

blockquote[cite]:after {
content: "Source: " attr(cite);

}

This is an example of an attribute selector, part of the CSS2 specification. It means that if
a <blockquote> element with a cite attribute is found, the value of that attribute should
be displayed after the contents of the quote. There are some fairly severe downsides to this
method, though. First, it will work only in modern browsers. It won’t work in Internet
Explorer 6 or below, and while Internet Explorer 7 will support attribute selectors, it won’t
support the :after and :before pseudo-elements or the content property, so again this
method will fail. Second, Firefox and other Mozilla browsers will not allow you to select,
click on, or otherwise engage with the content (see Figure 2-3). As far as these browsers are
concerned, this generated content is much like the bullet character in an unordered list—it
doesn’t exist in any meaningful fashion. This may not be a problem if your citation is a
name, but if it’s a URL, then ideally it ought to be clickable or at the very least selectable.

Figure 2-3. Mozilla browsers can display the source with CSS, but you can’t click or select the link.

The second method uses DOM Scripting, which has the advantage of working in a wider
range of browsers, but the disadvantage of only working where JavaScript is present. So,
for example, someone reading the text in a newsfeed (via RSS, Atom, etc.) might not see
the JavaScript-generated content. (But it will degrade gracefully, at least; users without
JavaScript will just see the quote.) The script to achieve this could look something like this:

function betterBlockquotes()
{

if (document.getElementsByTagName) {
quotes = document.getElementsByTagName("blockquote");
for(i=0; i<quotes.length; i++)
{

citation = quotes[i]getAttribute('cite');
citeLink = document.createElement('a');
citeLink.setAttribute('href', citation);
citeLink.appendChild(document.createTextNode('Source: '));
p = document.createElement('p');
p.appendChild(citeLink);
quotes[i].appendChild(p)'

}
}

}
window.onload = betterBlockquotes;

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

26

7656Ch02.qxp 11/16/06 11:30 AM Page 26

This method loops through a document, picking out all the blockquotes, and then it sifts
through them to find those with cite attributes. When it finds a blockquote with a cite
attribute, the script creates a new <a> element and drops the cite attribute value into the
a’s href attribute value. It creates the required 'Source: ' text fragment (it’s generated
by the script, as we don’t want that showing up if there isn’t any citation), and then finally
creates a new <p> element and inserts it into the document just after the blockquote itself.
The result looks exactly the same as the preceding CSS example, and despite not appear-
ing in the original (X)HTML markup, it can still be styled as desired (see Figure 2-4).

Figure 2-4. Using JavaScript allows us to create a clickable link.

Inline quotes
While the <blockquote> tag should be used for block-level quotes, there also exists a <q>
tag for inline quotes. I’ll warn you now: I’m going to conclude by recommending you don’t
use the <q> tag, so if you want to save yourself a bit of time, you can skip the next few
paragraphs and pick up again where I start discussing lists. If, however, you like to know
the details anyway, read on.

What is supposed to happen when you use the <q> tag is that the browser automatically
includes typographically correct quote marks at the beginning and end of the quote, mean-
ing that you, the author, should not include them. Furthermore, with judicious use of the
lang attribute, those quotes should be displayed in the style appropriate to the specified lan-
guage (e.g., some European languages will use chevrons or guillemets: « and » instead of
" and "). Also, browsers should display an awareness of nested quotes (in English, if a quote
begins with the double-quote character, then quotes within that quote should use the single-
quote character and vice versa). So, for example, the following fragment of HTML:

<p><q>This is a quote that has a <q>nested quote</q>➥

as part of it.</q></p>

should display as follows:

“This is a quote that has a ‘nested quote’ as part of it.”

The preceding script is fairly minimal. It could be enhanced by pulling out the title
attribute value of the block quote and using that for the link text, or it could include
class attributes on the generated elements to allow for specific styling.

USING THE RIGHT TAG FOR THE RIGHT JOB

27

2

7656Ch02.qxp 11/16/06 11:30 AM Page 27

While this may all sound very exciting, the reality is more humdrum. Not only is modern
browser support inconsistent—for instance, Firefox (and other Mozilla browsers) will cor-
rectly nest double and single quotes, while Safari will not—but Internet Explorer does not
generate any quotes at all, which makes things even more problematic.2 Do you add the
quotes yourself and end up with two sets of quotes in modern browsers? Do you leave the
quotes out and allow modern browsers to get on with things, but ignore the most popular
browser in the world? The question of what to do about Internet Explorer’s poor standards
support is a question that you will face often. In the case of <q>, I suggest simply not using
it at all. The inconsistent support for <q> features has essentially rendered it useless—you
can’t even use the CSS2 quotes property (as in q {quotes: none}) to remove generated
quotes, because Safari doesn’t support that property, and although there are various other
solutions involving JavaScript, CSS, or a combination of the two, they all fail in one situa-
tion or another.3 Urgh.

So, to summarize how best to use <q>: just don’t. Let’s move on.

Lists

Three list types are available in current (X)HTML versions: unordered lists , ordered
lists , and definition lists <dl>.

The differences between the list types are fairly minimal and straightforward:

An unordered list should be used when your content is (as you would expect) not
in any particular order.

An ordered list should be used when your content is in an order of some kind:
alphabetical, numerical, and so on.

A definition list is designed for associating names or terms with values or other
data—any items that have a direct relationship with one another, such as a glossary
of terms. Though it is a definition list, the W3C also suggests using such a list to
mark up dialogue,4 with each definition term as a speaker and the definition
description as the spoken words, so we can consider allowed usage of this element
to be fairly liberal.

Two other forms of lists, <menu> and <dir>, have been deprecated,
and the W3C recommends using an unordered list in their place.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

28

2. I’m referring to the Windows version of Internet Explorer, by the way. Internet Explorer on the Mac
deserves a special mention for being the only browser—even now—that gets almost all of the <q>
display properties correct. It even changes the quote character depending on the value of the lang
attribute. Say what you like about the browser, but it was ahead of its time.

3. See www.alistapart.com/articles/qtag.

4. See www.w3.org/TR/REC-html40/struct/lists.html#h-10.3.

7656Ch02.qxp 11/16/06 11:30 AM Page 28

Unordered and ordered lists
Unordered and ordered lists consist of an opening or , respectively, followed by
any number of list item——elements, and then finally a closing or . The
opening and closing tags can contain only list items, but list items can contain anything,
including paragraphs, divs, headers, and yet more lists. So long as they’re all contained
within a single list item, it’s perfectly valid and well-formed markup. As far as differences
between (X)HTML versions go, in HTML you don’t have to close list items with , but
in XHTML you do. Figure 2-5 shows the default styling of both list types.

Sadly, lists do not have any interesting or obscure attributes
that have not been deprecated in strict doctypes. The start
and value attributes used to be available to us. start allowed
authors to start the numbering of an ordered list at a number
other than 1, which was useful if you needed to interrupt an
ordered list, such as in the case of a list of search results split
over several pages. value allowed authors to give a specific
list item an out-of-sequence number. It may be possible to
reproduce the functions of these attributes with CSS in the
future using CSS counters,5 but as yet very few browsers will support this. If you need to use
these attributes, consider using a Transitional doctype, otherwise your document(s) will fail
validation tests. There also existed a compact attribute, intended to inform browsers that
the list was a brief, compact list and should be rendered with that in consideration, but with
no browser support, this attribute has also fallen by the wayside.

Thankfully, though the markup may not be exciting, it is at least flexible, and with CSS you
can display a list in a wide variety of ways: horizontally, vertically, expanding/collapsing, or
as an image map (see the section “Image maps” later in the chapter). For instance, take the
following navigation menu:

Home
Contact
About
Archive

We can turn this into a horizontal menu very easily:

li {
float: left;

}

We can achieve the same effect by turning the from a block into an inline container
with use of display: inline; but a block-level container will offer us more styling options
in the future. Floating the list items left will cause the list to look as shown in Figure 2-6.

USING THE RIGHT TAG FOR THE RIGHT JOB

29

2

5. See www.w3.org/TR/REC-CSS2/generate.html#counters.

Figure 2-5.
An unordered list
and an ordered list
with their default
styling

7656Ch02.qxp 11/16/06 11:30 AM Page 29

Figure 2-6. An unordered list with the list items floated left

Simple! But clearly quite ugly and a bit unusable at this stage, so let’s tidy things up a little:

li {
border: 1px solid;
float: left;
list-style-type: none;
padding: 0.2em 1em;

}

By adding a border, removing the list bullet and adding a touch of padding, we get the list
shown in Figure 2-7.

Figure 2-7. An unordered list with the list items floated left, bordered, and padded

As you can see, we already have a very serviceable horizontal menu. We could jazz this up
even more with some styling of the anchor tags, giving them a background-color, using
display: block to allow them to fill the whole list item area, changing their background
with :hover, and so on.

So, already you can see that a simple list can be displayed in a different way from its
default style. It’s possible to use CSS to create some quite dynamic behavior with lists
(though in most cases JavaScript is also required for compatibility with Internet Explorer).
As documented by Eric Meyer (http://meyerweb.com/eric/css/edge/menus/demo.html),
browsers that supported the :hover pseudo-class on any element (Firefox et al.) could use
that to display nested lists as pop-out menus. The CSS to accomplish this is very simple:

li ul {display: none;}
li:hover > ul {display: block;}

This means that any that is a descendent element of an —that is, a nested list—
should not be displayed. The second line says that any that is a child element of an

Russ Weakley, a co-chair of the Web Standards Group, has created a huge col-
lection of different list styles (more than 70 at the current count) available at
http://css.maxdesign.com.au, and the article titled “CSS Design: Taming
Lists” by Mark Newhouse at www.alistapart.com/articles/taminglists is
also well worth a look. To help take some of the pain out of creating lists of links,
it’s also worth trying out Accessify’s List-O-Matic (http://accessify.com/
tools-and-wizards/developer-tools/list-o-matic), an online list-builder
that lets you select from a variety of prebuilt styles.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

30

7656Ch02.qxp 11/16/06 11:30 AM Page 30

 that is being hovered over should display as normal. In compliant browsers, the end
result looks like Figure 2-8.

Figure 2-8. A pure CSS nested menu

All very neat. As mentioned, though, Internet Explorer 6 and below won’t have a clue what
to make of your li:hover,6 so JavaScript is required. Patrick Griffiths’s Suckerfish Dropdowns
script (www.htmldog.com/articles/suckerfish/dropdowns) provides both a CSS solution
and a JavaScript solution that are pretty robust (multiple nested menus are catered for) and
very easy to implement, requiring only the inclusion of a small script and the addition of a
class selector to your CSS file.

The definition (is this)
The definition list consists of an opening <dl>, followed by a definition term (<dt>), and
then any number of definition descriptions (<dd>). A typical definition list looks like this:

<dl>
<dt>Bottle</dt>
<dd>A receptacle having a narrow neck, usually no handles, ➥

and a mouth that can be plugged, corked, or capped.</dd>
<dd>To hold in; restrain: "bottled up my emotions."</dd>
<dt>Rocket</dt>
<dd>A vehicle or device propelled by one or more rocket engines,➥

especially such a vehicle designed to travel through space.</dd>
</dl>

USING THE RIGHT TAG FOR THE RIGHT JOB

31

2

6. Internet Explorer 7 will support :hover on all elements, so it is likely that these pure CSS menus will
work without scripting.

7656Ch02.qxp 11/16/06 11:30 AM Page 31

Most browsers would display the preceding code in a similar way to that shown in Figure 2-9.

Figure 2-9. A definition list, with the definition terms on the left and the definition descriptions
indented

Definition lists are, as noted, fairly flexible. As long as there is a direct relationship between
the term and the definition(s), many constructs can be represented using this list. For
instance, a photograph as the term could have descriptions including information about
both the photographer and the camera. In addition, a definition list could be used to dis-
play a schedule for a series of presentations at a conference, with the title of the presen-
tation as the definition term and the descriptions including details of the presenting
author and the date and time. A definition list could also be used in an online shopping
application to describe product details, and so on.

Although definition lists are flexible in use, you should bear the following caveat in mind:
a definition term cannot contain any block-level elements—no paragraphs, headers, or
lists—which means that terms cannot be given differing levels of importance in the same
way that headings can (<h1>, <h2>, etc.). A definition description, however, can contain any
element or series of elements, so long as they’re well-formed.

Links

Links are most likely up there alongside paragraphs and headers as among the first pieces
of HTML you ever learned, but we can still plumb the depths of obscurity and poke around
at a few unused and potentially useful attributes. Strictly speaking, the <a> tag is not a link;
it’s an anchor, which can either link to a new file, point to a named anchor elsewhere
(either on the same page or on a different page), or point to any element that has an id
attribute. There’s also the <link> tag, which is used solely in the head of a document. You
may have used it already for linking style sheets to your pages, but it can also be used to
provide extra navigational information, as you’ll see shortly.

First, let’s go through a quick refresher of the basics. An anchor tag linking to another doc-
ument will use the href attribute, like so:

link

To link to another anchor tag, you target the fragment identifier, which is set in the
linked anchor tag via the name or id attribute. The linking is done like so:

link

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

32

7656Ch02.qxp 11/16/06 11:30 AM Page 32

If you want to link to an anchor tag or other identified element on the same page, there is
no need to include the filename:

link

Linking to an anchor or an identified element on the same page can have multiple uses. A
common use is for a table of contents for a lengthy document with anchors scattered
throughout, and sometimes a “back to the top of the page” link: back to
top.7 Another common use is to create skip links, which are links that allow people
to skip past long blocks of navigation links to get at the content. Skip links are usually
included for users who navigate with a keyboard, or a mobile or screen-reading device,
but sometimes also present visually as well for users who are zooming in and may not
enjoy scrolling around. A typical skip link looks like this:

<!-- present near the top of the page -->
Skip Navigation

About
Contact
Help
and so on...

<!-- beginning of your actual content -->

Use of these sorts of links can dramatically increase the usability of your website for cer-
tain groups of users, but there are several browser bugs and usability issues to consider.

An anchor tag that isn’t linking anywhere and is literally just an anchor point will include
its fragment identifier as a value of either the name attribute or the id attribute, like so:

<h3>Part Two</h3>

So, what’s the difference between using the name and the id attribute? Well, the name
attribute can only be applied to anchor tags for link-targeting purposes, whereas you can
use the id attribute in any tag. So, if you give each of your heading tags a unique identifier,
you can point your links directly to those instead of having to include an extra anchor. For
instance, the preceding example can be simplified like this:

It is valid to have an empty anchor tag of the form , but the
HTML specification warns that some browsers may not recognize it.

A useful article that summarizes good use of skip links is Jim Thatcher’s
“Skip Navigation” (www.jimthatcher.com/skipnav.htm).

USING THE RIGHT TAG FOR THE RIGHT JOB

33

2

7. It’s a good idea to explicitly include an anchor or identified element with a name/id of top—some
browsers will infer such location, but not all will do that.

7656Ch02.qxp 11/16/06 11:30 AM Page 33

ca5dc47a1a589f3bbaac53bc8a905118

<h3 id="parttwo">Part Two</h3>

If you are using an anchor, then bear in mind that if you give it an ID and a name, they
must be identical. Furthermore, you cannot have an identical name and ID in separate ele-
ments on the same page.

You also have the option of using the hreflang attribute to specify the language of the
resource designated by the href attribute, and the charset attribute to specify the char-
acter encoding, but it is unlikely that you will ever need to use these attributes.

Relationship issues
You can specify the relationship type of the link by using the rel attribute, and the reverse
relationship with the rev attribute, both of which can be used in either <a> links or <link>
links. The nature of these two attributes can be a little tricky to grasp, so let’s consider an
example. You may have encountered rel before when using the <link> tag to reference
an RSS feed in the head of your web page, like this:

<link rel="alternate" type="application/rss+xml" ➥

href="http://example.com/feed/" />

The preceding code means that “an alternative version of this document exists at
http://example.com/feed/,” and user agents can spot that and find the RSS feed—most
modern browsers will display a feed icon in the browser address bar, allowing the user to
select, view, and subscribe to the feed. The rev attribute works the same way, but in
reverse. So, using the preceding example, the document at the feed URL could have a rev
attribute value of alternate, but this time it would mean “this document is an alternative
version of the document located at http://example.com/.”

The rev and rel attributes can take any value, but the HTML specification lists several pre-
defined types:

alternate: As mentioned earlier, this value designates alternate versions of the
document in which the link occurs. It can be used with the lang and hreflang
attributes if the alternate version is a translation, and with the media attribute if the
alternate version is designed for a different medium. For instance, if you were link-
ing to a print style sheet, you would use the attribute/value media="print".8

stylesheet: A rel attribute value of stylesheet informs the user agent that the
linked document is a style sheet (rather obviously). You can use it in conjunction
with alternate (as in rel="alternate stylesheet") to specify a range of alterna-
tive style sheets that the user agent can allow the user to select from (both Firefox
and Opera have this functionality built in).

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

34

8. The media attribute has a number of valid values, but only a few are widely supported. The values avail-
able are screen, tty, tv, projection, handheld, print, Braille, aural, and all, which are aimed
respectively at computer screens, terminals, televisions, projectors, handheld devices, printed pages,
Braille tactile feedback devices, speech synthesizers, and all of the above. Of these, you are most likely to
use screen and print, and possibly handheld (which has limited support among handheld browsers).
Opera uses projection when in full-screen mode, so if you have specified a screen type for your main
style sheet, you may wish to consider including projection: <link media="screen, projection" ... />.

7656Ch02.qxp 11/16/06 11:30 AM Page 34

start: In a collection of documents, a rel attribute value of start indicates to user
agents and search engines which document should be considered the starting point
for the collection.

next: This value indicates that the linked document is the next document in a col-
lection of documents.

prev: This value is similar to next, except it indicates the previous document rather
than the next. If you’re a completist, you could have links with both rev/prev and
rev/next in them, but it would probably be enough to just have the revs.

contents: This value refers to a document serving as a table of contents.

index: This value refers to a document providing an index for the current document.

glossary: This value refers to a document providing a glossary for the current
document.

copyright: This value refers to a document providing a copyright statement for the
current document.

chapter: This value refers to a document serving as a chapter in a collection of
documents.

section: This value refers to a document serving as a section in a chapter.

subsection: This value refers to a document serving as a subsection in a section.

appendix: This value refers to a document serving as an appendix in a collection of
documents.

help: This value refers to a help document that should relate to the website or web
page—for instance, a collection of “further reading” links or an explanatory docu-
ment listing FAQs.

bookmark: This value refers to a bookmark (i.e., a starting point within a document
or collection of documents).

These are just the link types predefined by the W3C; you can also define additional types
of your own. For instance, you could label any links that point to external sources with a
rel="external" attribute, and in his weblog Joe Clark advocates using the rev attribute to
indicate that a zoom layout is available (http://axxlog.wordpress.net/archives/
2005/01/14/zoom-hack).

Some user agents already take advantage of these attributes. For example, Opera features
a navigation bar that displays links with rel attributes in a fixed toolbar (see Figure 2-10)
and will allow you to select alternate style sheets from a drop-down menu (as does Firefox).

A zoom layout is a CSS layout specially formatted for low-vision users. It usually fea-
tures large, light text on a dark background and a single-column design. See Joe
Clark’s article “Big, Stark & Chunky” at www.alistapart.com/articles/lowvision
for more information.

USING THE RIGHT TAG FOR THE RIGHT JOB

35

2

7656Ch02.qxp 11/16/06 11:30 AM Page 35

Figure 2-10. Opera’s rel-based navigation bar. The page here has a Contents link, as well as Previous
and Next links.

Both Opera and Firefox rely on the alternate style sheet link to also have a title attribute,
which is used to display the options to the user (see Figure 2-11). The attributes also pro-
vide web authors with extra hooks for CSS and JavaScript, as you will see later on.

Figure 2-11. Changing styles in Firefox

Technorati (http://technorati.com), a weblog search and tracking engine, utilizes the
rel attribute to help generate its tag-based navigation (see Figure 2-12).

Figure 2-12. A Technorati tag cloud, with the more popular tags appearing in a larger font

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

36

7656Ch02.qxp 11/16/06 11:30 AM Page 36

By adding rel="tag" to a link within a blog post, you are indicating that the resource indi-
cated by the href of the link can be used as a general category page for the specific topic.
For instance, if you are writing an article on Apple’s iPod for your blog, you could include
a link such as the following somewhere in the body of your article:

iPod

When you do this, Technorati and other tag-aware services and aggregators can determine
that your article belongs in the category of “ipod,” and that the resource indicated can be
considered as a collection of related articles. Your article can then be included in future
collections of related articles.

We’ll take a closer look at the use of rel="tag" in Chapter 5, so don’t worry about it too
much at this stage.

Targeting links
Something worth noting is that the target attribute, which is used on anchor tags to
direct a link into either a new browser window or an alternative frame within the window,
has been deprecated, so if you are writing strict XHTML, you must use JavaScript to repli-
cate this behavior. This is where you can take advantage of the rel attribute: by using a
simple bit of JavaScript, it is possible to pick up any links with a rel value of external and
cause them to open in new windows.9 Here’s a short script that does just that:

function popup()
{

if (document.getElementsByTagName) {
a = document.getElementsByTagName("a");
for(i=0; i<a.length; i++)
{

if(a[i].getAttribute("rel") ➥

&& a[i].getAttribute("rel") == "external")
{

a[i].onclick = function()
{

window.open(this.getAttribute('href'));
return false;

}
}

}
}
else return false;

}
window.onload = popup;

USING THE RIGHT TAG FOR THE RIGHT JOB

37

2

9. If you want to style your external links in a different fashion from your regular links, then you would
still need to add a class. Although you can use CSS attribute selectors to target links with a specific rel
value (using a[rel=external]), these will not work in Internet Explorer.

7656Ch02.qxp 11/16/06 11:30 AM Page 37

What’s happening here? Well, it’s a JavaScript function that will collect all <a> tags in the
(X)HTML document, and then loop through that collection picking out each <a> with a rel
attribute value of external, set its onclick action to open in a new window, and finally
instruct the user agent to not follow the link again in the existing window (with return
false). This allows you to maintain a valid, XHTML Strict document without muddying up
your markup with inline onclick attributes, and if you change your mind in the future, you
only have to change (or remove) this script, instead of having to change every link.

Also worth noting is the CSS :target pseudo-class, introduced as part of the as-yet
incomplete CSS 3 specification (see www.w3.org/TR/css3-selectors), but supported
already in Firefox and Safari (and likely to soon be supported in Opera version 9 and
above). This pseudo-class allows you to style a targeted anchor or identified element.
Though it’s not supported in any version of Internet Explorer,10 it never hurts to include
this type of extra treat for users of modern browsers. To see it in action, you should create
a file containing a number of links, like so:

<p>link to paragraph one | ➥

link to paragraph two | ➥

link to paragraph three</p>

Then, underneath, create three paragraphs, each with a unique id matching those in your
links:

<p id="one">paragraph one</p>
<p id="two">paragraph two</p>
<p id="three">paragraph three</p>

Finally, include the following line in the head of your document:

<style type="text/css">:target { background: yellow;}</style>

Now, in either Firefox or Safari, start clicking those links. The targeted paragraph gains a
yellow background, which is useful to indicate to users where they should be looking if
they’ve followed a link from a separate page or a list of contents at the start of a long doc-
ument, and it saves them from having to hunt around for what they want.

The preceding script is by no means the only way to do achieve this effect.
For a comprehensive, all-singing, all-dancing new window script, I suggest
Roger Johnanson’s script, available at www.456bereastreet.com/archive/
200610/opening_new_windows_with_javascript_version_12/. It covers
a wider range of situations and includes support for progamatically
including a warning to users about the new window.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

38

10. You can replicate the :target functionality in Internet Explorer with JavaScript. See Patrick Griffiths
and Dan Webb’s “Suckerfish :target” article (www.htmldog.com/articles/suckerfish/target) for
more information.

7656Ch02.qxp 11/16/06 11:30 AM Page 38

Accessible linking
You can enhance the accessibility and usability of your website with judicious use of the
tabindex and accesskey attributes (on the <a> tags, but not the <link> tags) and the
title attribute (available to use on all elements).

The title attribute gives extra information about the related element. In the case of anchor
links, it should be used to give a description about what the link is about, but only if the link
text does not already provide enough information. For instance, there’s no need to write
Contacts, as a screen-reading device is
likely to read out both the title and the link text redundantly. A better title in this case might
be “E-mail, telephone, and postal contact information for the board of directors,” as this title
allows you to have a short link (one that would fit in a narrow navigation list or similar) but
still provide a detailed explanation. Some browsers display the title value as a tooltip, visi-
ble when users hover over the element with their mouse, while other browsers display the
value in the status bar in lieu of the URL. In the case of <link> links, the title value is usually
what is used to generate a menu of alternative style sheets and such to users.

The tabindex and accesskey attributes both only apply to elements that can take key-
board focus: anchor links and form fields (I discuss these attributes’ use with form fields in
Chapter 4). tabindex allows you to create a specific tabbing order for users who are using
a keyboard instead of a mouse to navigate your site. You do this by giving an attribute
value of a number, such as tabindex="1", which would make that element the first ele-
ment focused when the user presses the Tab key. A tabindexed element with a higher
value would be the next, and so on.

The tabindex attribute has its uses, but you should use it with care. If you have built your
site well, with your navigational elements in a logical order in the source markup, then you
are unlikely to even need to apply tabindexes to your links, as the browser will be able to
work out the logical tab order automatically. You also run the risk of confusing users if
your tabindex structure is radically different from what they’re used to, and you may
encounter maintenance problems if you find you need to insert a new link in the middle
of your list, leading to a renumbering of all the subsequent tabindexes.

The accesskey attribute comes with a similar “use with caution” warning. This attribute
allows you to specify a character to be used as a keyboard shortcut, such as
accesskey="s", which would result in that element gaining focus when the user activates
that shortcut. Depending on the browser, this shortcut could be with Ctrl+S, Alt+S, or even
Ctrl+Alt+S (plus the Mac equivalents).

It sounds nice enough, but there are strong arguments for avoiding accesskeys altogether.11

To start with, there is no standard accesskey scheme, which results in many sites having dif-
ferent shortcut keys. Most browsers do not come with any ability to display what the
accesskeys actually are to the user, which means the user must either find an accessibility
statement and refer to it or view the source markup. Also, conflicts between accesskeys and
hard-wired browser shortcuts can upset user expectations, and with so many different

USING THE RIGHT TAG FOR THE RIGHT JOB

39

2

11. To hear what various web standards notables have said about accesskeys, I suggest starting with
Dave Shea’s blog entry titled “I Do Not Use Accesskeys” (www.mezzoblue.com/archives/2003/12/29/
i_do_not_use) and going from there.

7656Ch02.qxp 11/16/06 11:30 AM Page 39

browsers available, it was discovered by Web Accessibility Technical Services that / \ and]
were the only characters not already used by a browser.12

Opera, which provides keyboard shortcuts for everything but the kitchen sink, deals with
this problem by including a keyboard shortcut that “enables” accesskeys—pressing
Shift+Esc will then allow you to use the accesskeys without needing any modifier key (so
to jump to a form field that had an accesskey value of s, you would just need to press S
instead of Shift+S or Ctrl+S). However, this does not address the problem of discovering
exactly what accesskeys are in use on any given website, and Opera doesn’t even provide
a notification to let you know whether you’re in an enabled mode or not—or let you
know, without delving into the help files, that such a system exists at all.

A system in use at Accessify attempts to get around this problem by allowing users to set
their own accesskeys (http://accessify.com/preferences/accesskeys), but this solu-
tion is unlikely to become widespread: it’s site-specific; it can’t be shared easily between
sites, as cookies cannot be read from across different domains for security reasons; and
users would still have problems on sites that did not implement this method.

There is a place for both tabindex and accesskey attributes, such as in web-based
applications that need to mimic a desktop application, or in complex forms where the
source order of the form elements may differ from the desired layout.

Marking up changes to your document

The and <ins> tags are both used for marking up changes to a document, most
commonly for changes within the text (e.g., correcting details within a blog post after
newer, more accurate information has been acquired). They can be used to note changes
in document structure as well (e.g., wrapping whole sections of your website). They’re ver-
satile, as they can be either block or inline, depending on the context. Both of the follow-
ing examples are valid:

<p> Lorem ipsum dolor sit amet, ➥

consectetuer adipiscing elit.</p>
<p> Lorem ipsum dolor sit amet,➥

consectetuer adipiscing elit.</p>

If you have these tags within a block element—that is, a block element that doesn’t allow
nested block elements, such as a paragraph or a heading—then they can be considered as
inline elements, like or . However, if you use these tags to contain a block
element, then they can be considered as block elements themselves (though you may
need to apply display: block in your CSS to take advantage of block-style margins,
paddings, and borders).

These tags do have some limitations, though. For instance, you can’t use to mark the
removal of an , like this:

list item

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

40

12. Web Accessibility Technical Services, “Using Accesskeys - Is it worth it?”, www.wats.ca/
show.php?contentid=32, January 2005.

7656Ch02.qxp 11/16/06 11:30 AM Page 40

because the only valid tag you can place directly within a is the . The same is true
for removing table rows (<tr>) from tables—it would be invalid markup, even though it
makes logical sense.

Visually, the tag will usually default to drawing a line through its content, while the
<ins> tag will draw an underline, as shown in Figure 2-13. I generally remove the underline
with CSS (ins {text-decoration: none;}), because if something is underlined on a web
page, people tend to try and click it, but it may be OK if your actual links are distinctive
enough.13

Figure 2-13. A paragraph with some deleted and inserted content

Two attributes are specific to and <ins>: datetime and cite. The former allows you
to set a date for when the correction took place, and the latter is for you to provide a link
to a page explaining the reason behind the correction:

<p> Lorem ipsum dolor sit amet, <del datetime="20060509" ➥

cite="http://example.com/errata.html">consectetuer ➥

adipiscing elit.</p>

As is often the case with these kinds of attributes, their information is hidden from most
users, so if you want to display it, you will need to use JavaScript, as discussed earlier when
we examined how to retrieve the cite attribute value from a <blockquote>. You can also
use JavaScript to control the display of your deletions and insertions. This could be in the
form of a simple display/hide toggle link, or you could go a bit further.

Presentational elements
A presentational element says nothing about the content it describes, but instead
says everything about how it appears. A range of these elements are still in the HTML
specification, some of which we can still use and others of which have more appropriate

Jonathan Snook experimented with using JavaScript to create a <div> containing both
the datetime and cite values for each or <ins>, and then displaying that <div>
alongside the containing paragraph. See his article “An experiment with INS and DEL”
at www.snook.ca/archives/html_and_css/an_experiment_w for more information.

USING THE RIGHT TAG FOR THE RIGHT JOB

41

2

13. The W3C uses <ins> and for its working drafts of specifications. For instance, at www.w3.org/
Style/css21-updates/WD-CSS21-20050613-20040225-diff/cover.html the W3C has really gone to
town with them.

7656Ch02.qxp 11/16/06 11:30 AM Page 41

alternatives. The HTML specification doesn’t explicitly list elements as being presentational
per se, so I’m going to go over elements that are commonly held to be presentational:
<hr>, <pre>, <sup>, <sub>, <i>, , <strike> and <s>, <u>, <tt>, <big>, and <small>.

When considering using any of these elements, the acid test should be this: are you using
the element purely for the visual effect? If the answer is no, then you’re probably OK; if
the answer is yes, a more suitable alternative may be out there. A further test is if you can
remove the style sheet from your document and have the document still make sense. If
this isn’t possible, then you may find a presentational element is exactly what you need.

Font style elements

A font style element is defined by the W3C as an element that simply specifies font infor-
mation, and thus has no semantic meaning or value. Although they have not all been dep-
recated, their use is generally discouraged in favor of style sheets. The font style elements
as defined by the W3C are <i>, , <tt>, <big>, <small>, <strike>, <s>, and <u>. There
are also two font modifier elements, and <basefont>, but both have been dep-
recated and are no longer of any use to us. Font style elements go against what I’ve been
saying about considering what your content means, rather than what it looks like—these
elements say a lot about appearances and nothing about meaning. Nevertheless, some of
them can still be useful to us, particularly when (X)HTML does not provide us with a mean-
ingful alternative.

The <i> and elements are the two most obvious presentational elements, and in the
drive toward increased accessibility and a standards-based design methodology they have
often been eschewed in favor of and , respectively, because the former tags
convey purely visual information while the latter tags convey meaning as well—emphasis.
However, people can go too far and use and as standard replacements,
using them constantly for any instance where they require italic and bold text. This error
has been perpetuated by numerous WYSIWYG tools that keep the common I and B but-
tons but change their function, adding an or element to the markup
instead. This would be fine if web designers and authors actually meant, every time, to
emphasize, but that isn’t always the case.

Both of these elements still have their uses, and neither has been deprecated or removed
from any (X)HTML specification. For instance, <i> can be used when italicizing text in a
foreign language (i.e., <i lang="it">Molte grazie</i>). Using a span for this purpose
would require an additional class name,14 such as , so
with <i> and both as semantically meaningless as each other, I recommend simply
using the <i> element, because it already does what you want and will take up less space
in your markup.

The <tt> element renders text in a teletype or monospaced font. Again, this element is
semantically meaningless, and you may find other elements such as <code>, <pre>, or

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

42

14. If you’re only concerned about CSS2-supporting browsers, then you can use an attribute selector in
your CSS to achieve the italic effect: span[lang] { font-style: italic;}. This means that you
don’t need the extra class name, but it also means you lose the effect in Internet Explorer, content
aggregators, and other non-CSS user agents.

7656Ch02.qxp 11/16/06 11:30 AM Page 42

<samp> more suitable to describe your content (discussed further in the next section).
Nevertheless, it remains part of current (X)HTML specifications, so it is there for you if
required.

<big> and <small> both affect the font size of their contained content, and nested <big>
or <small> elements will cause the contents to be even bigger or smaller. It’s purely pre-
sentational, and you may find that the CSS font-size property is more appropriate for
your needs, though some, such as accessibility advocate Joe Clark, have suggested using
nested <big> and <small> elements in tag clouds15 to achieve the “weighted by impor-
tance” visual effect. Others, such as Tantek Çelik, suggest using nested elements
instead,16 which has the benefit of being more meaningful but loses the visual effect in
non-CSS user agents—you pays your money and you makes your choice.

The only font style elements that have been deprecated in both HTML 4 and XHTML 1 are
<strike>, <s>, and <u>. <strike> and <s> have an identical function: they draw a hori-
zontal line through their content, and this function can be visually replicated by using the
CSS text-decoration property. If you wish to indicate that some content has been
deleted, then use the element (discussed previously). <u> is used for underlining
content, and again this function can be replicated with text-decoration. It is also advis-
able to not underline anything that isn’t a link—links and underlines are so commonly
associated with one another that anything on the Web that’s underlined now looks like a
link to users.

As far as styling these elements goes, there’s not much point beyond specifying further
font information (such as specifying a range of specific typewriter-style fonts for <tt>, or
increasing the size variation between different levels of <big> and <small>). However,
don’t be put off using any of these elements just because they’re presentational. With the
exceptions of <strike>, <s>, and <u>, all of these elements are part of current and future
(X)HTML specifications, and if you find yourself writing
... or ... a lot, then consider using
<tt> or <i> instead; they’re as semantically meaningless as a span, but they already do
what you want and take up less space in your markup. You can always restyle these ele-
ments, just as you would a span if required, but if you think you might wish to do this in
the future, then bear in mind that you might end up with an <i> styled as a , and vice
versa.

It is also worth considering these elements when designing WYSIWYG interfaces for aver-
age users, because having incorrect semantics is worse than having no semantics at all. For
example, if you think your users may want to italicize a citation, don’t give them the
chance to do so with the element; the <i> element is a safer choice because it isn’t
going to confuse any tool or browser trying to utilize your semantic information.

The <hr>, <pre>, <sup>, and <sub> elements

The <hr>, <pre>, <sup> and <sub> elements are all technically presentational elements, but
they also convey meaning that cannot (or should not) be replicated with CSS. Take the

USING THE RIGHT TAG FOR THE RIGHT JOB

43

2

15. See http://blog.fawny.org/2005/01/23/weighted.

16. See http://tantek.com/log/2005/02.html#d02t0800.

7656Ch02.qxp 11/16/06 11:30 AM Page 43

<hr> element, for instance: it’s a straightforward horizontal rule. In many cases, this can
(and should) be reproduced by simply adding a CSS border to the top or bottom of a
block element, but you should only do this if you’re using an <hr> element to apply a bor-
der. If you’re using an <hr> element specifically as a separator of the sort you might find
separating sections of a book chapter, then your rule does have a structural purpose and
should be used instead of the CSS border.17

The <hr> tag comes with several attributes—size, width, noshade, and align—but all have
been deprecated, so we must use CSS for style, which can be a little quirky, as Internet
Explorer essentially treats <hr> as an inline element, whereas Firefox et al. treat it as a block
element. For instance, if you want to color your horizontal rule red, you must set both the
color property and the background-color property. If you want to align the rule to the left
or right, you must set the text-align property for Internet Explorer and use margin: 0
auto for other browsers.

For an even more interesting rule, you can use the background-image property—but this
won’t work in Internet Explorer. There are two solutions at the time of this writing. The
first is to wrap your <hr> in a <div>, give your <div> the background image, and then use
display: none to remove the <hr> from view. Non-CSS user agents will then see the <hr>,
but CSS user agents will see your background image instead. The second solution, for the
markup purists, is to dynamically include a <div> with JavaScript. You could then style the
<div> and hide the <hr> with CSS.

For example, the following script notes where all of the <hr> elements are, and then cre-
ates a <div> with a class name of rule and inserts it just before each <hr>. Your markup
remains free of extraneous <div> tags, but you can still style those that are being dynami-
cally inserted.

function lovelyrules() {
if (!document.getElementsByTagName || ➥

!document.createElement || !document.insertBefore) return;
var rules = document.getElementsByTagName("hr");
for (var i=0; i<rules.length; i++) {

var div = document.createElement("div");
div.className = "rule";
rules[i].parentNode.insertBefore(div, rules[i]);

}
}
window.onload = lovelyrules;

Now, what about <pre>? The visual effect caused by the <pre> tag is to preserve the white-
space (i.e., the tabs, spaces, and line breaks) in your markup, so if that whitespace is impor-
tant in understanding the content, such as code samples, then use <pre> (see Figure 2-14).
The effect can be replicated with the CSS white-space property, but using this property in
place of <pre> means you’ll lose the effect in non-CSS user agents.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

44

17. This is exactly the sort of thinking that has led the W3C to suggest a <separator> element in XHTML
2.0 (see Appendix A).

7656Ch02.qxp 11/16/06 11:30 AM Page 44

Figure 2-14. A comparison of <pre> in both source code and rendered in a browser. The
whitespace (tabs and carriage returns) that I inserted in the source code have been retained.

Similarly, the <sup> and <sub> (superscript and subscript) elements can convey important
meaning via presentation. Consider the two following equations:

e=mc2

e=mc2

Although they look alike, only one of the preceding equations is Einstein’s; spelled out, the
former equation is “e equals m times c squared,” while the latter is “e equals m times c
times 2.” Or how about this:

H2O

H2O

The first is chemical equation for water—two hydrogen atoms and one oxygen atom—and
the second is simply the letter “H” followed by the number 2, then the letter “O”, and is
meaningless. So, the placing and styling of the “2” is therefore important, and if you
removed its styling and positioning and placed it in a style sheet, some browsers could lose
the meaning.

The W3C also notes that some languages (other than English) require the use of subscripted
and superscripted text. Here’s an example in French:

Mlle Dupont

Stylistically, you can also use superscripts and subscripts in English. You’ll most likely have
seen them in dates, or to indicate the presence of footnotes/endnotes:

The 14th of September

The committee report stated that the minister had acted in good faith.ii

USING THE RIGHT TAG FOR THE RIGHT JOB

45

2

7656Ch02.qxp 11/16/06 11:30 AM Page 45

Phrase elements
A phrase element adds meaning to a fragment of text. It’s likely that you’ve already
encountered phrase elements without even knowing it; and are two such
elements, but there are several other, underused phrase elements that can help to make
your document more structurally and semantically meaningful while still maintaining your
desired visual style. The full list of phrase elements is as follows: , , <cite>,
<dfn>, <code>, <samp>, <kbd>, <var>, <abbr>, and <acronym>.

Emphasis

As mentioned previously, and should be used not to italicize or bold text;
rather, they indicate emphasis, with being more emphatic than , and the
combination of the two more emphatic still. Where visual browsers will usually display an
 and with italic and bold text, respectively, screen readers may change vol-
ume, pitch, and rate when encountering these elements.

Here’s an example usage:

<p>I was a little bit angry, then I was ➥

very angry, then I was ➥

extremely angry!</p>

The preceding code would render in most user agents as follows:

I was a little bit angry, then I was very angry, then I was extremely angry!

You may not want your emphasis displayed in such a way. Remember that you can always
restyle and elements to display however you like, while still retaining their
semantic meaning. For instance, if the text of your document was in Japanese ideographic
text, then you would be unlikely to need an italic version for emphasis, and a change in
background color may be more appropriate.

Citations and definitions

We’ve already encountered the cite attribute, used within <blockquote> tags to attribute
a source to the quote, and within and <ins> tags to refer to an explanatory docu-
ment, but there also exists a <cite> tag to contain stand-alone references not associated
with any particular element, or citations of other material. You would use this tag for
referring to other sources, such as book or movie titles. Most user agents will display a
citation in italic font, a typographic convention you’ll often see in the print world as well.

This preceding issue of internationalization is discussed in more detail in
Molly E. Holzschlag’s article “World Grows Small: Open Standards for
the Global Web” (www.alistapart.com/articles/worldgrowssmall).

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

46

7656Ch02.qxp 11/16/06 11:30 AM Page 46

Also usually italicized by default is the <dfn> element, which indicates the first usage of a
term that will be used repeatedly throughout a document (i.e., its defining instance), for
example:

<p>You can keep your CSS rules in a file separate from your HTML.
This file is known as a <dfn>style sheet</dfn>. You can also have a
separate style sheet that determines how your web page looks when it is
being printed...</p>

The preceding code would render as follows:

“You can keep your CSS rules in a file separate from your HTML. This file is known as a
style sheet. You can also have a separate style sheet that determines how your web page
looks when it is being printed . . .”

It’s worth considering adding unique id attributes to your definitions, as this enables you
to link directly to them from a glossary if you have one (which could be constructed using
a definition list).

Coding

Four phrase elements are particularly useful for describing programming or other com-
puting-related tasks, such as describing user input: <code>, <var>, <samp>, and <kbd>. The
former two are used to display raw computer code, (X)HTML markup, CSS, and so on.
<code> will usually display in user agents in a monospaced font, while <var> will display in
an italic font (see Figure 2-15).

<code>
#!/usr/local/bin/perl

print "<var>Content-type: text/html\n</var>";

print "<var>Hello World</var>\n";

</code>

Figure 2-15. <code> and <var> in use. The content within <var> tags is italicized by default.

As noted earlier, you may wish to lose the line breaks in such an example and wrap the
code in <pre> tags, to preserve any breaks and tabs and other whitespace formatting. If
you’re displaying long lines of code, though, eschewing <pre> and using breaks instead will
better prevent those long lines from breaking out of your layout.

While <code> and <var> are used for displaying code, <samp> (as in “sample”) describes
the output of that code. It is used simply, and it will also usually display in a monospaced
font:

USING THE RIGHT TAG FOR THE RIGHT JOB

47

2

7656Ch02.qxp 11/16/06 11:30 AM Page 47

<p><samp> [paul@localhost ~]$ perl hello.cgi</samp></p>
<p><samp>Content-type: text/html
➥

<H1>Hello World</H1> </samp></p>

With all these monospaced fonts now in your document, it’s probably worth considering
using CSS to mix things up a little. For instance, you could display <samp> as the output of
a command prompt window, as shown in Figure 2-16.

Figure 2-16. <samp> displays in a monospaced font by default, and as such it can look a bit too
much like <code>. Using CSS to style it differently can help distinguish the two.

The CSS for this is straightforward enough:

samp {
background: #000;
border: 3px groove #ccc;
color: #ccc;
display: block;
padding: 5px;
width: 300px;
}

Finally, there is <kbd>, which is used to indicate keyboard input by the user, like so:

<p>Press <kbd>A</kbd>, then <kbd>B</kbd>, then ➥

<kbd>C</kbd>. Finally, press the <kbd>Enter</kbd> key to continue.</p>

I think that the obvious thing to do with a <kbd> element is to style it to look vaguely
keyboardlike:

kbd {
background-color: #F1E7DD;
border: 1px outset #333;
color: #333;
padding: 2px 5px;
}

The preceding CSS yields a result like that shown in Figure 2-17.

Figure 2-17. Several <kbd> elements styled to look like actual keys

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

48

7656Ch02.qxp 11/16/06 11:30 AM Page 48

Abbreviations

For displaying abbreviated text, you have two options available: <abbr> and <acronym>.
The <abbr> element indicates abbreviated text, with the full, unabbreviated text often
contained within a title attribute, while <acronym> is used for acronyms (and possibly ini-
tialisms as well) instead of abbreviations. What’s the difference? Well, the W3C is a little
hazy on the issue, but the Oxford English Dictionary defines the three terms as follows:

Abbreviation: A shortened form of a word or phrase.

Acronym: A word formed from the initial letters of other words (e.g., laser, which
is an acronym of Light Amplification by Stimulated Emission of Radiation).

Initialism: An abbreviation consisting of initial letters pronounced separately (e.g.,
BBC).

Or in other words, all acronyms and initialisms are abbreviations, but not all abbreviations
are acronyms or initialisms. So when in doubt, using <abbr> to describe your content will
be correct. Unfortunately (did you see this coming?), Internet Explorer 6 and below do not
support the <abbr> element, which has led to many people using <acronym> instead
(which Internet Explorer does support), even though not all abbreviations are acronyms.
Typical. The question of whether you use <acronym> incorrectly or use <abbr> correctly
and forget about Internet Explorer is one you will have to answer yourself, but my prefer-
ence is for the former—I’d rather use the right semantics for the situation than use the
wrong ones.

Another factor to take into consideration is how screen readers and other aural devices
treat abbreviations. An abbreviation that is an acronym or a truncation should be pro-
nounced as if it’s a regular word; an abbreviation that is an initialism should be spelled out
rather than pronounced. We can control this with a specific aural style sheet and, due to
the lack of a specific initialism tag, a couple of extra class names:

<abbr>Mr</abbr>
<acronym>NATO</acronym>
<abbr class="initialism">BBC</abbr>

The aural styling of these elements using CSS is as follows:

@media aural {
abbr , acronym {speak : normal;}
abbr.initialism {speak : spell-out;}
}

Dean Edwards has come up with a way of tricking Internet Explorer into sort
of supporting <abbr>, detailed in his article “abbr-cadabra” (http://dean.
edwards.name/my/abbr-cadabra.html). Internet Explorer 7 includes native
support for <abbr>.

USING THE RIGHT TAG FOR THE RIGHT JOB

49

2

7656Ch02.qxp 11/16/06 11:30 AM Page 49

Alternatively, you can include an aural style sheet separately in the head of your document
like this:

<link rel="stylesheet=" media="aural" href="aural.css" />

Images and other media
Without images, the Web would be far less interesting to look at, though on the other
hand we’d also never have to run across any animated construction-worker GIFs on an
unfinished page. You can always find a silver lining if you look hard enough.

Using images within your website is something you are likely very familiar with, but this
topic is still worth discussing, due to the different ways images can be included: inline, via
CSS background images, via image maps, and through the <object> element. Each method
has pros and cons, as described in the sections that follow.

Inline images

The simplest method of including an image is directly within the markup, using the self-
closing element:

There are some things to consider here. First, let’s look at alt attributes. In both XHTML
and HTML, all images should have alt attributes regardless of whether the attribute con-
tains a value. An alt attribute’s one and only purpose in life is to provide an alternative to
the image, which means that the value of the attribute must duplicate any meaningful
content within the image. If your image has no meaningful content, then leave the alt
attribute in, but leave it empty: alt="". (Also consider whether you can remove the image
entirely and place it within your CSS as a decorative background image, as discussed in the
next section.)

The alt attribute is not there to provide any additional information or a descriptive cap-
tion—this is the purpose of the title attribute. The content of an alt attribute should
only be displayed if the image is unavailable for whatever reason; it is an alternative (either
display the image or the alternative text, not both). Unfortunately, due to Internet
Explorer’s (incorrect) behavior of displaying the content of an alt attribute as a tooltip,18

it’s been frequently misused for that very purpose when, in fact, a title attribute might
be more appropriate.

Also available is the longdesc attribute, which provides a link to a page containing a more
elaborate supplement to the alt attribute value. Browser support for this attribute is his-
torically very poor, though, so you should use with caution, if at all.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

50

18. If a title attribute is present as well, then Internet Explorer will display that value in the tooltip
rather than the alt attribute value. If both attributes are present but the title attribute is empty,
then no tooltip will display.

7656Ch02.qxp 11/16/06 11:30 AM Page 50

The img element allows you to specify an image width and height value in pixels, in the
form of width="150". These attributes are optional, but an advantage of using them is that
a web browser can accurately display textual content in the correct space before the
images have loaded, avoiding the problem of text jumping around to make way for images
as they arrive. A disadvantage is that they are presentational attributes, and ideally these
sorts of values would be set in the CSS to make it easier to change if the image dimensions
ever changed. Furthermore, the presence of size attributes will cause the alt attribute
value to display in a box sized to the same dimensions, which may not be desirable if the
text is larger than the space allowed.

CSS background images

Images can also be included via the CSS background-image property. You should use this
property to place decorative images within your pages to help keep your markup as clean
as possible, allowing you to make significant changes to the look and feel of your website
by changing only your style sheet (and also allowing you to specify different images for
printed, mobile, and projected versions of your site). A disadvantage is that when images
are not available but CSS is, alternative content will not be displayed—so using a CSS back-
ground image for navigation button text or similar is not advised.

So long as you’re not reproducing textual content, background images can be very useful to
help us achieve certain visual effects. In his article “Faux Columns” (www.alistapart.com/
articles/fauxcolumns), Dan Cederholm documented the concept of faux columns,
where using a single tiled background image on the <body> of your web page creates the
illusion of two equal-height columns, irrespective of which column contains the most con-
tent. Or see Doug Bowman’s article “Sliding Doors of CSS” (www.alistapart.com/
articles/slidingdoors), where he details a technique in which using an oversized back-
ground image in a navigation menu allows the text to be resized and the background
image scaled with it. Also worth a look is Tim Murtaugh’s article “CSS Design: Mo’ Betta
Rollovers” (www.alistapart.com/stories/rollovers), where he describes how judicious
use of the background-image property and the :hover pseudo-class allows you to create
CSS-based image rollovers without recourse to JavaScript.

Image maps

Image maps come in two varieties: client side and server side. A client-side image map
consists of an image with a series of predetermined hotspot areas of varying shapes and
sizes that represent links. A server-side image map is a similar construct, but the pixel
coordinates of the mouse click are sent to the server, which calculates the subsequent
action. Client-side image maps are preferable as they can be made accessible to people
browsing with images disabled or unavailable, and they offer immediate feedback as to
whether users are clicking an active region.

The muddy markup required for an image map is anathema to the mantra of separating
presentation from content. There are two distinct parts: the map element (<map>) and the
image element (), neither of which is nested within the other. The map element is a
container tag with a name attribute, and the tag contains any number of self-closing <area>
tags. These <area> tags use the shape attribute to determine the shape of the area (circle,

USING THE RIGHT TAG FOR THE RIGHT JOB

51

2

7656Ch02.qxp 11/16/06 11:30 AM Page 51

rect, poly, or default), a coords attribute to stake out the dimensions of the shape, and
either an href attribute to determine where users should be taken to after they’ve clicked
or a nohref attribute if no link is in use.

In the meantime, the element gains a usemap attribute, the value of which should be
the same as the value of the map’s name attribute. It also needs an ismap attribute to say
that the image is a map. Phew.

Here’s an example (following XHTML rules) that will—hopefully—clarify the preceding
explanation:

<map name="Map">
<area shape="rect" coords="118,192,203,249" ➥

href="http://joeblade.com" alt="Home" />
<area shape="circle" coords="52,76,39" ➥

href="http://joeblade.com" alt="About" />
<area shape="poly" ➥

coords="159,145,115,96,115,39,160,21,205,40,206,103" ➥

href="http://joeblade.com" alt="Contact" />
</map>
<img src="imagemap.jpg" alt="" width="300" ➥

height="272" usemap="#Map" ismap="ismap" />

This image map contains three clickable areas: a rectangle, a circle, and a six-sided polygon.
As you can imagine, hand-coding image maps this way is fairly laborious, but most
WYSIWYG software comes with the ability to create areas just by pointing, clicking, and
dragging. Figure 2-18 shows an example of an image map created in Dreamweaver.

Figure 2-18. An image map created in Dreamweaver. Creating
clickable areas this way is a simple matter.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

52

7656Ch02.qxp 11/16/06 11:30 AM Page 52

While it is not possible to re-create circular or polygonal areas with a pure CSS solution,
you can create rectangular areas by styling a simple unordered or ordered list of links. The
steps to do this are as follows:

1. Create a list of links with standard (X)HTML.

2. Give each link a unique id attribute.

3. In the CSS, give the list a background image, width, and height, and add position:
relative; to make sure your links (that you will position absolutely) are placed in
relation to the top left of the list and not the browser window.

4. Also in the CSS, give each link the required width, height, and background image or
color.

5. Using position: absolute; and the top, left, right, and bottom CSS properties,
position each link within the list as appropriate.

6. Hide the link text with text-indent: -9999px;.19

Let’s go through that process again, this time with examples. The (X)HTML is simple
enough:

Home
About
Contact

The CSS is slightly less simple, but it shouldn’t give you much of a headache. You’ll most
likely need a graphical editor of some kind to help you work out the coordinates, though.
First of all, you style the list:

ul {
background: url(imagemap.gif) top left no-repeat;
height: 272px;
position: relative;
width: 300px;
}

Next, reset the margins and padding of both the list and the list items to 0. This may not
always be necessary, but it will help when trying to position elements, and it also aids in
cross-browser consistency.

ul, li {
margin: 0; padding: 0;
}

USING THE RIGHT TAG FOR THE RIGHT JOB

53

2

19. The negative text-indent value will shunt the text content of the link way off to the left side of the
screen, making it effectively invisible. When doing this on a link, however, Firefox (and possibly some
other modern browsers) will draw its “active” link outline around the entire space, leading to a large
outline box stretching off to the left. To overcome this, just add overflow: hidden; and the outline
box will only surround the visible, clickable area instead.

7656Ch02.qxp 11/16/06 11:30 AM Page 53

Then you deal with the links. Each one needs to be positioned separately, by referencing
the id attribute set in the markup, but shared values can be dealt with in one try. I’m going
to give these links background colors of green to demonstrate where the clickable areas
will lie—in the real world, you would blend them in better with their backgrounds.

a {
background: green;
display: block;
overflow: hidden;
position: absolute;
text-indent: -9999px;
}

Finally, position each link and give them all a width and height:

#homelink {
top: 15px;
left: 50px;
width: 75px;
height: 75px;
}

#aboutlink {
top: 20px;
left: 110px;
width: 100px;
height: 125px;
}

#contactlink {
top: 190px;
left: 120px;
width: 75px;
height: 50px;
}

If all has gone well, your CSS-based image map should look a little like Figure 2-19.

The advantage of creating a maplike structure in this way is that the (X)HTML is just a plain
old list of links, making life easier for users of text browsers and the like. The disadvantage
is as mentioned earlier: background images set via CSS will not provide any alternative text
if images are disabled but CSS is enabled, so the map becomes inaccessible in this
scenario.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

54

7656Ch02.qxp 11/16/06 11:30 AM Page 54

Figure 2-19. A CSS-based image map, as seen in the browser

Being objective

<object> is designed to include objects such as images, videos, and Java applets in a web
page. It was intended to replace the more specific and <applet> tags, as well as the
proprietary <embed> and <bgsound> tags. It comes with a fallback mechanism, whereby
you can nest <object>s, allowing the user agent to display alternative content if it cannot
render the preferred choice. For instance, you can nest a video, an image, and finally some
text like so:

<object data="myVideo.mpg" type="application/mpeg">
<object data="myPicture.gif" type="image/gif">

Some descriptive text, and a link.
</object>

</object>

The user agent should first try to display the video, but if it can’t, it should then try to dis-
play the image, and if it can’t do that, it displays the text—no need for alt attributes here.
Unfortunately, poor browser support has made <object> very hard to use as it was
intended, and the tag itself is overloaded, with 17 element-specific attributes.20 Internet
Explorer treats any <object> content as if it were an ActiveX control, prompting the user

USING THE RIGHT TAG FOR THE RIGHT JOB

55

2

20. A trimmed-down <object> is likely to appear in XHTML 2.0, as detailed in Appendix A.

7656Ch02.qxp 11/16/06 11:30 AM Page 55

with a security warning if the user’s security settings are set to do this, even if the tag is just
displaying a static image. There can also be problems with scrollbars appearing around the
image, as if you were including a web page within an <iframe>21—this behavior is clearly
undesirable.

But <object> isn’t just about including images: it is also used to embed rich media players
such as Windows Media Player, RealPlayer, QuickTime,22 and Flash Player,23 along with the
<param> element, which passes various parameters to the media player in question. It’s
unlikely that you’ll ever be hand-coding these embedded objects by hand, unless you’re
comfortable writing markup like classid='CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95',
so I don’t cover this sort of usage in great detail here. Simply be aware that when embed-
ding media, the <object> tag is what you usually need to use.

Summary
This chapter covered a substantial number of (X)HTML tags available to you, with the
exception of table- and form-related markup, which will follow in their own dedicated
chapters. As you’ve seen, you have a wide range of options when it comes to structuring,
describing, and displaying your content, and although you may only ever use a fraction of
the available tags, knowing the tags you are able to use in the first place and how to cor-
rectly use them are important parts of mastering HTML.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

56

21. An <iframe> is frame that can contain other content, including other web pages. It can be treated
the same as any other frame, except it can also be positioned anywhere on a page and given fixed
dimensions.

22. Apple recommends that you use JavaScript to embed QuickTime movies, due to Internet Explorer
now requiring any embedded ActiveX control to be manually activated by the user due to a patent
dispute between Microsoft and Eolas. You can find more details at www.apple.com/quicktime/
tutorials/embed.html.

23. Anyone interested in embedding Flash without invalidating their document should read the article
“Flash Satay: Embedding Flash While Supporting Standards” by Drew McLellan (www.alistapart.com/
articles/flashsatay).

7656Ch02.qxp 11/16/06 11:30 AM Page 56

7656Ch02.qxp 11/16/06 11:30 AM Page 57

7656Ch03.qxp 11/16/06 11:34 AM Page 58

3 TABLE MASTERY

7656Ch03.qxp 11/16/06 11:34 AM Page 59

In the olden days, when the Internet was made of wood and powered by steam, table
markup, created by Netscape and implemented in version 2.0 of its browser, represented
the only way you could lay out your pages in anything other than a vertical document struc-
ture. Table markup became standardized in HTML 3.2,1 and using tables to lay out pages
was perfectly acceptable, though it was noted even then in the W3C Recommendation that
doing so “typically causes problems when rending to speech or to text only user agents.”2

The only caveat was that if you were using tables for layout, you didn’t use any non-
necessary markup; you were limited to the basics: the <table>, <tr>, and <td> tags.
Essentially, a layout table had to be made as invisible as possible to all user agents, which
means any advice you may have heard about adding a title or summary attribute to a lay-
out table reading “This is a layout table” is just plain wrong.

If I had written this book three or four years ago, I would probably have said that it was still
OK to use tables for layout. Indeed, in the first edition of Jeffrey Zeldman’s landmark book
Designing with Web Standards (New Riders Press, 2003), he advocated a “hybrid” approach,
where you use CSS as much as possible but use tables for the basic structure, giving you a
website that would at least have the desired layout in browsers not advanced enough to
understand your CSS.3 The presence of legacy browsers and the limited CSS support in the
modern browsers of the day meant that web designers really had little choice.

But obviously I’m not writing this book three or four years ago—I’m writing it now, and
now, in 2006, the situation is different. The HTML 4 specification no longer suggests using
tables for layout purposes. Remember, we’re aiming to separate our presentation from our
content, and laying out a website in a table would be the complete opposite of this. In
fact, I will go so far as to say that you will never need to use tables for layout purposes—
browser support for CSS is now capable enough to reproduce almost all of the effects that
we would previously have used tables for.

Even though there is no longer any serious need to use tables for layout (though you’ll be
tempted to use them sometimes, believe me), there’s still a need for tables for displaying
tabular data—calendars, schedules, exam results, product pages, and so forth—and the
available markup can be as simple or as complicated as required.

So, this little history lesson brings us to the markup itself. I’ll be frank: table markup is pos-
sibly the most exciting markup you’ll ever encounter. Seriously, if you thought that
(X)HTML was fun before this stage, you’re in for a real treat now!4 I’ve split this chapter
into three sections. In the first, I’ll cover the table markup itself so you know what we’re
talking about. In the second section, I’ll cover the styling of tables, and finally I’ll discuss
some ways to enhance a well-made table with JavaScript.

To begin with, then, let’s look at the basics of table markup in a section I imaginatively call
“Table basics.”

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

60

1. You may hear people claim that table markup was introduced in HTML 2.0—this is not the case.

2. See www.w3.org/TR/REC-html32#table.

3. At the time of this writing, a second edition of Designing with Web Standards is due out soon, where I
expect this advice to have been amended or removed.

4. Sadly, there is no <sarcasm> element, but if there was one, this would probably be an appropriate
place to use it.

7656Ch03.qxp 11/16/06 11:34 AM Page 60

Table basics
It’s reasonably straightforward to create a simple table when hand-coding markup. The
bare essentials of a single table is an opening <table> tag, followed by at least one table
row (a <tr>), followed by at least one table cell (a <td>, meaning “table data”). Here’s an
example:

<table>
<tr>

<td>Some data</td>
</tr>

</table>

That’s about as minimalist as you can get when it comes to creating tables, but you’re
unlikely to create a table with only one item of data, so let’s make things a touch more
interesting. The following markup is for a two-column table with four rows of data (the
presentational border attribute is just here as a visual aid to better distinguish the layout
of the table, and its effect should be replicated with CSS in a production environment):

<table border="1">
<tr>
<td>Name</td>
<td>Place of residence</td>

</tr>
<tr>
<td>Paul Haine</td>
<td>Oxford</td>

</tr>
<tr>
<td>Vikki Roberts</td>
<td>Bracknell</td>

</tr>
<tr>
<td>Leon Boardman</td>
<td>London</td>

</tr>
<tr>
<td>Emma Sax</td>
<td>Peaslake</td>

</tr>
</table>

Figure 3-1 shows how the preceding markup would normally render in a browser.

TABLE MASTERY

61

3

7656Ch03.qxp 11/16/06 11:34 AM Page 61

Beautiful, I’m sure you’ll agree. Those table data cells, the <td> tags, can contain most
other (X)HTML tags, including other tables—something we all relied on heavily when using
tables for layout in the past.

You can make this table a bit clearer and easier to read by marking out the headers at the
top of the table, to indicate columns. While you can do this easily by adding a class name
to each table cell and then styling it with CSS, a far better way is to turn those uppermost
table cells into bona fide table headers with the <th> tag used in place of <td>.

<table border="1">
<tr>
<th>Name</th>
<th>Place of residence</th>

</tr>
...

</table>

The preceding markup renders as shown in Figure 3-2.

There are several benefits to this approach. To begin with, it’s a great aid to accessibility.
While a screen-reading device may, in the hands of a competent user, read the first table
example as “Name, Place of residence, Paul Haine, Oxford, Vikki Roberts, Bracknell . . .,” with
table headers available it can understand how the headers relate to the data and read it out
as “Name, Paul Haine, Place of residence, Oxford, Name, Vikki Roberts, Place of residence,
Bracknell . . .”5 Of course, in this simple example it would be easy enough to infer the table

Figure 3-2.
A basic table using <th>
for header cells

Figure 3-1.
A basic table

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

62

5. The W3C provides a tool to help understand how your tables could be read by assistive devices at
www.w3.org/WAI/References/Tablin.

7656Ch03.qxp 11/16/06 11:34 AM Page 62

structure. It’s not hard to work out that “Name, Place of residence, Paul Haine, Oxford, Vikki
Roberts, Bracknell . . .” is a person’s name followed by a place name, but when tables get
more complex (by having more rows and columns), this becomes much more of an issue.

Besides making the table more accessible to users of screen readers, using proper table
headers also provides sighted users with a useful visual cue as to the structure of the table
and makes life marginally easier for the web author, who doesn’t have to include an extra
class name for every header. In addition, gives the designer another extra hook for CSS
and scripting.

Now that you’ve headed up the table, you can make things even better by including a
table caption, in the form of the <caption> element. This element needs to be placed
directly after the opening <table> tag:

<table border="1">
<caption>Personal details</caption
<tr>
<th>Name</th>
<th>Place of residence</th>

</tr>
...

</table>

Most user agents will render the caption as shown in Figure 3-3.

If you want the caption to appear below the table (as is common in academic publica-
tions), then don’t move the <caption> tag—it needs to stay under the initial <table> tag
no matter what you want to do. Instead, you could use the align attribute with a value of
bottom (it also accepts top, left, and right, which position the caption on top, or aligned
to the left or right, respectively). But doing this presents a problem: the align attribute
has been deprecated in XHTML, which means that if you’re writing to a strict XHTML doc-
type you must use CSS (discussed later in the chapter).

Figure 3-3.
A basic table using a
<caption>

You can also use the speak-header CSS property to control whether table header cells
are read out once or always, in an aural style sheet.

TABLE MASTERY

63

3

7656Ch03.qxp 11/16/06 11:34 AM Page 63

You may also include various inline elements within the <caption>, such as and
—
even is valid—but you may not include block elements, such as <p> or <h1>.

Finally, you can add a summary attribute to the opening table tag (<table summary="">).
This attribute is of no use to sighted users and will not be displayed onscreen6—it’s there
purely to aid in accessibility. Its purpose is to announce to nonsighted users the purpose of
the table, if that purpose is not clear already from the surrounding content or the caption
text. It’s not meant to be a complete description of all rows, columns, and data, so don’t
overdo it.

Adding structure

If your table looks like it’s getting a bit long and unwieldy, you can add some further struc-
ture with <thead>, <tfoot>, and <tbody> to help your browser make sense of things.
These tags allow you to group rows into a header section, a footer section, and a body sec-
tion, which has several advantages. When printing a long table, a browser can print the
header and footer section on every page to aid in readability—there’s no need to keep
checking back on the first page to find out what column you’re looking at. When a page is
displayed onscreen, a browser can keep the header and footer area static and allow the
body to scroll, enabling the web designer to place a long table in a restricted space. Also,
much like the <th> tags, these three tags give you another hook for CSS and scripting with-
out extra classes.

Like <caption>, these tags must be placed within the table markup in a very specific order
and location. First, you must include <thead>. This tag can go anywhere you like, but it’s
good practice to place it directly under the opening <table> tag—unless you’ve included
a <caption>, in which case the <thead> tag must go directly underneath that. You can
place it underneath your <tfoot> and <tbody> if you like, and it would still be valid
markup, but only do this if you want a bit of a brain ache when you come back to your
markup a few months down the line and wonder what on earth you were thinking.

The <tfoot> tag, however, must come before the <tbody> tag. Why does the footer come
before the body? It’s so that a user agent can render the top and bottom of the table
before starting on the middle, which is useful if you plan to have your table body scroll
and you have many rows.

Finally, you add the <tbody> tag. This tag is actually implicit in your table regardless. For
example, try adding tbody {font-style: italic} to your CSS and apply it to a basic
table, and you’ll see that it styles the text in your table in an italic font. Even though its
existence is implied, you must explicitly include the <tbody> tag if you’re using <thead>
and <tfoot>. So, once these tags are added, your markup should look a little like this:

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

64

6. Unless you’re pulling it out with JavaScript. Arguably, though, you shouldn’t be doing this, as the
attribute was never designed to be seen by sighted users.

7656Ch03.qxp 11/16/06 11:34 AM Page 64

<table border="1">
<thead>
<tr>
<th>Name</th>
<th>Place of residence</th>

</tr>
</thead>
<tfoot>
<tr>
<th>Name</th>
<th>Place of residence</th>

</tr>
</tfoot>
<tbody>
<tr>
<td>Paul Haine</td>
<td>Oxford</td>

</tr>
<tr>
<td>Vikki Roberts</td>
<td>Bracknell</td>

</tr>
<tr>
<td>Leon Boardman</td>
<td>London</td>

</tr>
<tr>
<td>Emma Sax</td>
<td>Peaslake</td>

</tr>
</tbody>

</table>

With the exception of the headers now repeated at the foot of the table, there’s no visual
difference between a table that has these elements and one that doesn’t, but it’s good to
include them as they provide extra, useful information about the structure of your table
that can be exploited when printing or when viewing onscreen.

Be careful when using the <tfoot> tag. Because this element may repeat itself over sev-
eral pages, it’s best used as a duplication of the <thead> content (as in the preceding
example), rather than the literal conclusion of a long table, such as a final total
beneath a column of prices (which would make little sense if it appeared before the
table had been completed).

TABLE MASTERY

65

3

7656Ch03.qxp 11/16/06 11:34 AM Page 65

Adding even more structure

If you need a table to span more than one row or column, you can achieve this effect with
the rowspan and colspan attributes, each of which takes a numerical value indicating how
many cells a particular cell should stretch across. This is all quite straightforward. For
example, let’s imagine that in addition to residing in Oxford, I have a second residence in
Barcelona (hey, I can dream). Adding this data to the table requires an additional row, but
rather than leaving an empty table cell next to the new place of residence, I’ll insert a
rowspan attribute so that the cell containing my name pairs up with both places of resi-
dence:

<tr>
<td rowspan="2">Paul Haine</td>
<td>Oxford</td>

</tr>
<tr>
<td>Barcelona</td>

</tr>
<tr>
<td>Vikki Roberts</td>
...

The table now renders as shown in Figure 3-4.

A table cell can span both rows and columns if necessary. You just need make sure your
cells and spans add up. For instance, if your table has two rows, one containing five <td>
elements, then the second row can only span up to five cells—any more than that and the
table will not be valid and will render unpredictably, and any fewer than that and the slack
must be taken up by remaining cells.

I’ve heard it suggested in the past that rowspan and colspan are presentational and should
be avoided, but this is incorrect. There’s no way of replicating this table structure in CSS,
and you’re using the attributes to define structure, not presentation, so you should keep
that information in the markup.

Figure 3-4.
A basic table using the
rowspan attribute

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

66

7656Ch03.qxp 11/16/06 11:34 AM Page 66

As you may have noticed by now, most of the table markup presented so far relates only
to rows and individual cells within those rows—there is no <tc> tag. Instead, we have two
tags that can define columns and groups of columns, and both are optional: <col> and
<colgroup>.

The <colgroup> tag allows you to specify how many groups of columns will exist in the
table (so one <colgroup> per group of columns, and a group can contain just one column),
and how many columns are contained within each group with the use of a span attribute
and a numerical value. This tag is placed directly after the opening <table> tag (but after
the <caption>, <thead>, and <tfoot> sections, if these exist), and it does not contain any
markup other than optional <col> tags, described further shortly.

Consider, for example, the table shown in Figure 3-5.

Figure 3-5. A table with multiple columns: there are three column groups
here, headed by Name, Place of residence, and Date of birth.

Reading along the uppermost headers, you can see that this table has three groups of
columns, with the final column spanning the width of three cells. Using <colgroup>, you
can define that structure at the start of the table like so:

<table border="1">
<colgroup></colgroup>
<colgroup></colgroup>
<colgroup span="3"></colgroup>
<tr>
...

With this markup, you’re saying that this table contains three groups of columns, the first
two of which contain a single column (a single column is implied; you don’t need to add a
span="1" attribute in this case), and the third group contains three columns.

There also exists a <col> element, a self-closing element that also has a span attribute and
that’s used for specifying the existence of columns within a <colgroup>. Functionally and
semantically, it’s practically the same as <colgroup>, but unfortunately the HTML specifi-
cations do not allow for nested <colgroup> elements, so you must use <col> instead.
Using the preceding example, you can specify the final set of three columns in two differ-
ent ways, either with one <col> per column, like this:

TABLE MASTERY

67

3

7656Ch03.qxp 11/16/06 11:34 AM Page 67

<table border="1">
<colgroup></colgroup>
<colgroup></colgroup>
<colgroup><col /><col /><col /></colgroup>
<tr>
...

or with a single <col> and a span attribute, like this:

<table border="1">
<colgroup></colgroup>
<colgroup></colgroup>
<colgroup><col span="3"></colgroup>
<tr>
...

This is starting to look like a lot of work—why would anybody bother with this at all? It’s
true that at first glance it might appear that you’re supplying redundant information, but
this markup does have its uses. There are some side benefits, but the main reason for the
existence of <colgroup> and <col> is to allow browsers to render the table even if all of
the table row data has yet to arrive. Without the information provided by these two tags,
a browser must first parse the entire table to find the row with the largest number of cells
in it. Next, the browser must calculate the width of that row, and only then will it know the
width of the table and allow it to be rendered. When you let the browser know up front
about the column structure of the table, the browser can render the data as it arrives.

Perhaps of more interest to the visual design is styling columns with CSS. Without any
<colgroup> or <col> in your markup, styling a single column differently from all the rest
would require you to add extra attributes to every table data cell within that column. I’ll
talk more about styling these columns later in the chapter—admittedly, there isn’t a great
deal you can do that will work across the major browsers, but it’s always nice to have the
option.

Associating data with headers

When your table becomes more complicated, it can be harder to clearly associate your
data with your table headers for the vision impaired. For instance, in Figure 3-6, each data
cell has two headers.

Figure 3-6. A table with multiple headers on both rows and columns

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

68

7656Ch03.qxp 11/16/06 11:34 AM Page 68

Visually, it’s clear how the data relates to the different headers, but this information may
be less clear to a screen reader. You can help clarify matters by using the scope attribute
on the <th> or <td> tags, which accept four values: col, row, colgroup (yes, it’s both an
attribute and an element), and rowgroup.

The scope attribute is straightforward enough to use:

<table border="1">
<tr>
<td></td>
<th scope="col">Staff</th>
<th scope="col">Managers</th>

</tr>
<tr>
<th scope="row">Bitbyte</th>
<td>20</td>
<td>1</td>

</tr>
<tr>
<th scope="row">UltraHyperMegaCorp</th>
<td>3000</td>
<td>1000</td>

</tr>
</table>

It’s now clearer to assistive devices that the headers that begin a column are actually
columns, and the headers that begin a row are actually rows. Similarly, if the scope of a
header cell covers multiple rows or columns, use the value colgroup or rowgroup instead
of col or row.

Another way of associating data with headers is by using the id and headers attributes.
Each data cell receives a headers attribute, which contains a space-separated list of the id
attribute value of every header cell that applies to that data cell. Clear? Perhaps not, so
here’s an example. Take a look at the table in Figure 3-7, which is the same as the one
shown in Figure 3-6 except (for some reason) whoever made it decided to divide the staff
numbers into short and tall groups.

Figure 3-7. A table with multiple headers and columns

It’s a little more complex than the previous table, but it’s not really complex. Here’s the
markup behind it, complete with id and header attributes:

TABLE MASTERY

69

3

7656Ch03.qxp 11/16/06 11:34 AM Page 69

<table border="1">
<tr>
<td rowspan="2"></td>
<th colspan="2" id="staff">Staff</th>
<th rowspan="2" id="managers">Managers</th>

</tr>
<tr>
<th id="short">Short</th>
<th id="tall">Tall</th>

</tr>
<tr>
<th id="bitbyte">Bitbyte</th>
<td headers="staff short bitbyte">11</td>
<td headers="staff tall bitbyte">9</td>
<td headers="managers bitbyte">1</td>

</tr>
<tr>
<th id="ultrahypermegacorp">UltraHyperMegaCorp</th>
<td headers="staff short ultrahypermegacorp">2100</td>
<td headers="staff tall ultrahypermegacorp">900</td>
<td headers="managers ultrahypermegacorp">1000</td>

</tr>
</table>

As you can imagine, the technique shown in this markup can quickly become very
unwieldy the larger your table becomes. This coupled with the fact that you’ll almost cer-
tainly have to write these attributes in makes the scope attribute all the more appealing.
Alternatively, you could take a look at the Accessible Table Builder (http://accessify.com/
tools-and-wizards/accessibility-tools/table-builder), which allows you to create a
table via a web-based interface with either scope or headers and id.

Finally, there exists an axis attribute. axis is a little-known and little-used attribute, and
that’s essentially because it has never been any use to us, is absolutely no use to us now,
and is unlikely to be of any use to us in the future (so feel free to skip the next couple of
paragraphs). The attribute was created in the event that browsers would, at an unspecified
point in the future, incorporate query-language capabilities to retrieve data from a table,
similar to the way that the SQL language can be used to access data from a database. The
attribute would be used to group table header cells into categories, like so:

<th axis="personal-data">Name</th>
<th axis="location">Place of residence</th>
<th axis="location">Place of birth</th>
<th axis="favorites">Favorite food</th>
<th axis="favorites">Favorite color</th>

Then, using a browser’s built-in querying language, a user would be able to pull out all data
related to those categories as well as the table header data. However, the W3C provided no
recommendations or suggestions as to how browsers would access axis data, and no
browser has ever implemented any system to do so or has any public plans to do so. So, for
both today and the foreseeable future, this attribute is pretty useless (though it has not been

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

70

7656Ch03.qxp 11/16/06 11:34 AM Page 70

deprecated, so it is still valid to use). Although you can use CSS2 selectors or JavaScript to
target table cells that contain axis, you may as well just use a class instead and trade in a
bit of semantic markup for the added convenience and wider browser support.

Abbreviating headers

Although there exists an <abbr> element, discussed in the previous chapter, there also
exists an abbr attribute that can be used within a <th> tag and provides an abbreviated
version of the contents of the <th>. It is used like this:

<th abbr="Name">First name and last name</th>
<th abbr="Residence">Place of residence</th>
<th abbr="Birthplace">Place of birth</th>

The idea behind the abbr attribute is to allow screen readers to read out the abbreviated
version instead of the full version each time, saving valuable seconds. However, I’m skepti-
cal about how useful this attribute actually is, as in my experience—particularly with tables
with many columns—there’s a need to use the abbreviated version at all times, to help the
table fit within the page layout. Generally, if we could abbreviate the header while retain-
ing the meaning, we would do so. In such cases where an abbreviation is absolutely neces-
sary, it is as likely to be needed for visual users as for the vision impaired, and so the abbr
attribute should not be used. Instead, use the <abbr> element with a title attribute used
within the <th> tags, like so:

<th><abbr title="First name and last name">Name</abbr></th>
<th><abbr title="Place of residence">Res.</abbr></th>

As discussed in the previous chapter, Internet Explorer 6 and below versions do not sup-
port the <abbr> tag, so use it with caution.

Almost-standards mode

The existence of a doctype in your website has a very noticeable effect on the way your
page is rendered. The presence of a doctype will cause a browser to render the (X)HTML
in what is known as standards mode, the assumption being that if you have included a
doctype, then you know what you’re doing and the browser will try and interpret your
strict markup in a strict way. The absence of a doctype triggers quirks mode, which will
render your markup in old and incorrect ways, the assumption here being that if you
haven’t included a doctype, you’re probably not writing standard markup either, therefore
your markup will be treated as if it has been written in the past for buggier browsers.

While Internet Explorer has just these two modes, a further mode exists in Mozilla-based
browsers: almost-standards mode. This mode is triggered when a Transitional doctype is
used. It’s not generally worth worrying about, but the difference between standards and
almost-standards modes is related to tables, so it’s worth mentioning here.

When in standards mode, extra line-height is applied to the contents of a table cell, with
the result being that a table cell containing an image will gain a bit of extra space. This is
the correct behavior according to the CSS1/2 specifications.

TABLE MASTERY

71

3

7656Ch03.qxp 11/16/06 11:34 AM Page 71

This behavior caused a problem for websites that had been designed using the old “slice-
and-dice” method of construction: slicing up an image and using a table to put it all back
together again. The extra whitespace caused by the line-height was breaking these
designs, usually only by a few pixels, but enough to be noticeable. To aid in backward com-
patibility (after all, we try not to design sites with these techniques any more), almost-
standards mode was created, which did not implement this line-height part of the
specification. That’s the only difference, so it’s unlikely to ever be a problem for you, but
if you find yourself running into the whitespace problem and don’t want to switch to a
Transitional doctype, another solution is to add img {display: block;} to your CSS.

Table markup summary

The preceding sections sum up most of the table-related markup, aside from some pre-
sentational attributes that I cover in the next section. As you’ve seen, you have several
ways in which you can create a more accessible, semantically rich construct with plenty of
hooks for styling and scripting. As you’ve also seen, tables can easily become bloated
maintenance nightmares, especially if you start using the id and headers pair of attributes.

Part of the aim of this book is to encourage you to code by hand, to slave away over your
markup and learn its quirks and nuances to a near-pedantic degree. I’ll confess, though,
that when it comes to building tables, I rarely code them by hand. It’s possible to do so, of
course, but this is where WYSIWYG software such as Dreamweaver really comes into its
own. Creating large data tables with a few clicks of the mouse is comparative bliss, and
options such as where to place the <th> tags and whether to include a <caption> and/or
a summary attribute are built in—even scope attributes can be included automatically.
Creating rowspans and colspans is a breeze in such software; doing so usually just involves
selecting the cells you want to merge and then merging them. It’s often only the column
groupings, id, and headers that you ever need to hand-code.

So don’t fear WYSIWYG software when it’s actually being helpful; just keep an eye on the
markup it’s creating, in case it slips and falls.

Styling tables
Styling tables consistently across browsers can, unfortunately, be a bit of a black art. This
difficulty often relates to Internet Explorer’s support of various table-related CSS proper-
ties such as border-collapse being either absent or incorrect—or simply just different
from Firefox, Safari, and Opera—but it’s not always Internet Explorer at fault. I try to note
significant differences among the various browsers throughout this section, but consider
yourself warned: this process can often be a little unpredictable.

See http://developer.mozilla.org/en/docs/Gecko%27s_Almost_Standards_Mode for
more information about almost-standards mode.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

72

7656Ch03.qxp 11/16/06 11:34 AM Page 72

Presentational attributes

When it comes to presenting a table, you have many presentational attributes available to
use. These attributes can generally now be replicated (more or less) with CSS, however, so
there’s little need for them unless it’s particularly important to you that a user agent lack-
ing CSS support gets a table bordered only, for instance, on the left side. Before I go into
more complex styling (such as alternating table row background colors and using the
:hover pseudo-class), I’ll list those presentational attributes and explain how they can now
be achieved with CSS.

First, quite straightforwardly, here are the attributes that have been deprecated or
removed from the HTML and XHTML specifications: align, valign, width, and height.
Each of these has an equivalent in CSS. The width and height attributes are both repro-
duced in the width and height CSS properties. The two alignment attributes, align and
valign, are reproduced in CSS with text-align (accepting values of left, right, center,
and justify) and vertical-align (accepting values of baseline, bottom, middle, sub,
super, text-bottom, text-top, and top).

As mentioned earlier, the align attribute is also used to position the <caption> element,
with a value of top, left, right, or bottom. To position it in CSS, we don’t use the align
property; instead, we use the caption-side property, which accepts a value of top or
bottom, or we use the text-align property to align the caption left or right. Unfortunately,
Internet Explorer 7 and below do not support this property, so if it’s particularly important
to you that your caption appears beneath the table instead of above in all browsers, you’ll
need to continue using the deprecated align attribute. Otherwise, use CSS.

There are also three bordering attributes available that have related effects: border, frame,
and rules. The border attribute is simple: it accepts a numerical value that defines the
width in pixels of any border appearing within the table, and it needs to be set to a value
greater than 0 for any border-related attribute to have an effect. The frame attribute spec-
ifies which sides of the border surrounding a table will be visible. It accepts a wide range

You may have run into the bordercolor attribute in the past, alongside
bordercolordark and bordercolorlight, which could be used to achieve
a pseudo-3D effect. These attributes are all proprietary Microsoft exten-
sions, so they were never valid in the first place, but now they can be
avoided entirely with CSS. The bordercolor attribute, as you might expect,
sets the color of the border of the table cell if a border attribute has been
set on the opening table tag. This can be replaced with the border-color
CSS property. A shaded, pseudo-3D border can be re-created with the
border-style property, with a value of outset, inset, ridge, or groove.

For general table-styling inspiration, it’s worth having a look at the CSS Table Gallery
(http://icant.co.uk/csstablegallery), a Zen garden–style website where a single
table is restyled with user-submitted style sheets.

TABLE MASTERY

73

3

7656Ch03.qxp 11/16/06 11:34 AM Page 73

of values—void, above, below, hsides, lhs, rhs, vsides, box, and border—but all of these
effects can be achieved with the border property in CSS (border-top, border-left, etc.).
Finally, the rules attribute defines where horizontal and vertical rules appear within the
table and accepts values of none, groups, rows, cols, and all. As with the frame attribute,
the effect of rules can more or less be reproduced with CSS borders.

Spaced out

cellspacing and cellpadding are two attributes you’re most likely familiar with; they con-
trol the spacing between cells and the padding inside cells, respectively. The cellpadding
effect can be easily reproduced in CSS by applying padding to the <td>, like so: td
{padding: 3px;}. All very simple and straightforward.

The cellspacing effect can also be reproduced with CSS, but the CSS to do this is not sup-
ported by Internet Explorer—not even in version 7—so if this effect is particularly impor-
tant to you, and you have a large Internet Explorer user base, then you’ll need to continue
using the cellspacing attribute (it hasn’t been deprecated, so you can use it even if your
doctype is XHTML Strict). If it’s not so important to you, then read on to see the CSS,
which should work fine in all other modern browsers.7

To start with, you need to understand the CSS border-collapse property. This property
specifies which border model a table uses and accepts a value of either collapse or sep-
arate. The collapsing borders model means that adjacent table cells will share their bor-
ders with each other, as shown in Figure 3-8.

The separated borders model means that adjacent table cells will maintain their own bor-
ders, as shown in Figure 3-9.

Figure 3-9.
A basic table using the
separated borders model

Figure 3-8.
A basic table using the
collapsing borders model

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

74

7. Table cells do not have margins, so trying to use the CSS margin property to affect cell spacing will
not be effective.

7656Ch03.qxp 11/16/06 11:34 AM Page 74

To replicate the cellspacing effect, you can see that first of all, table {border-collapse:
separate;} needs to be in your CSS. Then, you can control that spacing with the
border-spacing property applied to the <table> element: border-spacing: 3px;.

This process is a little more involved than simply setting the attribute directly in the
markup, but if you want to remove as much presentational markup from your website as
possible, that’s how it’s done. This method also allows you more control, as the
border-spacing property is not limited to just one value; it can take up to two values, the
first for the horizontal spacing and the second for the vertical. Also, it is not limited to val-
ues set in pixels. For instance, you could write border-spacing: 4em 0.25em, which would
apply 4ems of spacing to the left and ride sides of a row, cell, or the table itself, and
0.25ems of spacing to the top and bottom sides.

There’s another CSS property, empty-cells, that does not replicate any presentational
attribute, but I’m mentioning it here because it also requires table {border-collapse:
separate;} to have been set. This property accepts a value of either hide or show, and, as
you might expect, it controls how empty table cells are displayed—either hiding them
from view or showing them. You can apply empty-cells to an entire table or drill down to
a specific table cell. Its effect is shown in Figure 3-10, where the first table cell has been
hidden.8 Internet Explorer does not support this property, so the usual caveats apply.

Figure 3-10. A table with an empty, invisible cell

Border conflicts

When you use the collapsed border model, and the borders are being shared between
cells, there is a possibility that styles may begin competing for a particular border, as there
are a variety of elements all rubbing shoulders: cells, rows, row groups, columns, column
groups, and the edges of the table itself. The general rule is that at each edge the most
eye-catching border style gains precedence, unless the border style is a value of hidden,
which removes the border no matter what else is specified.

Therefore, border conflicts are resolved like this:

1. A hidden border takes precedence over all other border style declarations.

2. A border with a style of none has the lowest priority. Although this may sound the
same as a hidden border, there is a difference: none is the default state for all ele-
ments, whereas hidden overrides any visual style.

TABLE MASTERY

75

3

8. If your table was created in Dreamweaver or a similar program, then your table cells will probably all
contain a nonbreaking space entity (), which will not be considered as empty cells (even though
they will appear empty in your browser). If you want to make use of the empty-cells property, you’ll
need to ensure your table cells are literally empty: <td></td>.

7656Ch03.qxp 11/16/06 11:34 AM Page 75

3. Narrow borders are discarded in favor of wider borders. If two competing borders
have the same width, then the style of the border comes into play, with the order
of preference being double, solid, dashed, dotted, ridge, outset, groove, and
finally inset.

4. If the competing borders differ only in color, then precedence depends on what
element the border is being applied to, with the order of precedence being first a
cell, then a row, followed by a row group, column, column group, and the root
table element. When two elements of the same type are in conflict, then the left-
most element takes precedence (unless the document is in a right-to-left reading
environment, in which case the rightmost element wins).

There is no rule as to how to deal with conflicting colors, so this is left up to whoever codes
the browser itself. Expect each browser you test to do something different in this case.

Styling columns

As mentioned earlier, use of the <colgroup> and <col> elements allows you to apply some
style to individual columns. There are some limitations, though. Only four CSS properties
are permitted—border, background, width, and visibility—and even so, the cross-
browser support for these is inconsistent.

To understand why only four properties are available here, you have to think about where
those <colgroup> and <col> elements lie in the markup. Remember, they take place
before all the table rows and cells. So this bit of CSS means “take the content of a <col>
and align its content to the right”:

col { text-align: right; }

The inheritance aspect of CSS means that any child elements will also inherit this value,
unless they are told otherwise. But the <col> doesn’t have any content, and it doesn’t have
any child elements! Because they exist outside the <tr><td> structure, elements contained
within that structure cannot inherit properties from either the <colgroup> or the <col>.
As there is nothing visible within a <col>, a value of text-align, color, or similar will not
have a visible effect.

Except in one browser. Yes, of course, Internet Explorer is once again doing its own thing.
In some cases, Internet Explorer will allow uninheritable properties to be inherited. It seems
to make a best guess at what you’re trying to do, and allows you to do it, so the previous
text-align example will actually cause a column of text to align to the right. But it shouldn’t,
and doesn’t in browsers that understand inheritance, so don’t rely on this technique.

Internet Explorer, the crazy rebel, does not follow these rules exactly, giving precedence
to the table border over all other elements. It tends to treat border styles of hidden as
none, so all visual borders gain precedence over hidden borders.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

76

7656Ch03.qxp 11/16/06 11:34 AM Page 76

Returning to those properties that are allowed, we find further difficulties, not the least of
which is Internet Explorer not allowing some of the allowed properties. Brain melted yet?

Technically, you should be able to apply a border to either a <colgroup> or a
<col>, and this should work in Opera, Firefox, and Safari, but not Internet Explorer.

You should be able to apply a background color or image in all browsers to either
a <colgroup> or a <col>.

The width property should also work across most browsers when applied to either
a <colgroup> or a <col>. When applying it to a <colgroup>, be aware that the
value specified will apply to each <col> within that group—thus, a <colgroup> with
a width of 100px, containing three <col> tags, will actually be 300px wide in total.

The visibility property, accepting a value only of collapse when applied to a
column, does not currently work in any browser, but if it did, it would cause that
column to disappear.

So much for styling columns, eh? It seems that at best, you can apply a background color
(as shown in Figure 3-11) or image and a fixed width to a column, and that’s about all you
can expect to work reliably across multiple browsers. But hey, it’s better than nothing, and
it’s certainly better than applying a class on each table cell in a given column.

Figure 3-11. A table with one <colgroup> styled to have an alternate
background color

I’m starting to feel that this discussion is turning a bit negative, so let’s move on to some
more interesting uses of CSS.

If you do use this method for Internet Explorer, then you can fudge the issue in modern
browsers by using attribute selectors in combination with the id and headers attributes.
With a style of td[headers=yourValueHere] { your styles here}, you can apply styles
to a particular column, but remember that it will involve considerably more markup and
more maintenance on your part.

TABLE MASTERY

77

3

7656Ch03.qxp 11/16/06 11:34 AM Page 77

Striping table rows

When a table has more than a few rows, it can be helpful to your readers to implement
what is commonly known as zebra striping, as shown in Figure 3-12.

Aside from being aesthetically pleasing, zebra striping a table is a valuable aid to usability,
providing readers with a visual guide to help them keep track of the associations between
data in different columns.

This effect is very easy to achieve with CSS. First, you need to add a class name to every
alternate row in the table, like this:

<table border="1">
<tr>
<th>Name</th>
<th>Place of residence</th>

</tr>
<tr>
<td>Paul Haine</td>
<td>Oxford</td>

</tr>
<tr>
<td class="alt">Vikki Roberts</td>
<td class="alt">Bracknell</td>

</tr>
<tr>
<td>Leon Boardman</td>
<td>London</td>

</tr>
<tr>
<td class="alt">Emma Sax</td>
<td class="alt">Peaslake</td>

</tr>
</table>

There’s no need to add a class to every row. Because only two colors are going to be in
use, you can simply style all rows with a single background-color and then override that
property for the alternate rows, like this:

Figure 3-12.
A zebra-striped table

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

78

7656Ch03.qxp 11/16/06 11:34 AM Page 78

tr { background-color: white; }
tr.alt { background-color: yellow; }

That’s all there is to it. Zebra striping has some downsides, one being the addition of the
class attribute. This is not a big problem if your table is small, but manually adding the
attribute to larger tables could prove to be quite laborious, though it shouldn’t be an issue
if your table is generated by some server-side code such as PHP or ASP—then you can
make sure alternate rows get the attribute set on the server. If you don’t want to hand-
code these attributes and your table isn’t being generated on the server side, you can use
JavaScript instead (see the section “Scripting tables” for details on how this is done).

Something else to bear in mind is that you must make sure that if you start moving your
table rows around, you keep track of which ones have the class attribute, or else you may
find your stripes bumping up against each other.

It will also be possible in the future to use CSS3 to automatically style alternate table rows
using the :nth-child pseudo-class, which targets an element that has a certain number of
siblings before it. For example, if you have a number of <div> containers, each containing
a number of paragraphs, then this CSS

p:nth-child(2) {background-color: red;}

will target the second paragraph in each <div>. How does this relate to zebra striping?
Well, this pseudo-class also accepts odd and even keywords, so the stripe effect could be
achieved with this CSS:

tr:nth-child(odd) {background-color: red;}

This particular bit of CSS3 is not currently supported by any browser, however, but as
Mozilla-based browsers and Safari have already begun implementing parts of the CSS3
specification (i.e., the :target pseudo-class, as mentioned earlier), it’s possible that support
for :nth-child will be with us by the time this book is published.

Remaining with these stripy notions, another useful feature that is quick and easy to imple-
ment makes use of the :hover pseudo-class applied to the table row:

tr:hover {background-color: pink;}

The effect is simple but effective, as shown in Figure 3-13.

Figure 3-13.
A table with a
highlighted row

TABLE MASTERY

79

3

7656Ch03.qxp 11/16/06 11:34 AM Page 79

This highlighting helps a user remain focused on a specific row. If you wanted to, you
could enhance this feature further by adding a hover effect on the table cell as well:

td:hover {background-color: red;}

Figure 3-14 shows the result.

All well and good, but there’s a predictable downside: Internet Explorer 6 and below only
support the :hover pseudo-class when it’s used on the <a> tag (but version 7 will support
this technique). It’s possible to use JavaScript to allow older versions of Internet Explorer
to have the same enhancement (see the section “Hovering with scripts”), but as this is an
enhancement rather than required functionality, you might consider providing it just in
the CSS so that modern browsers get to see it, and those browsers lacking sufficient sup-
port are simply left with an unenhanced table.

Scrollable tables

As mentioned earlier, including a <thead> and <tfoot> in your table would be beneficial
when printing, as the header and footer information could be printed on both pages auto-
matically. If the table spanned many pages, then you wouldn’t need to keep checking back
to the first page to remind yourself of the column names. But why should the printers get
all the benefits? Using CSS, it’s possible to create a table of fixed height, with a static
header and footer and a scrollable middle area, as shown in Figure 3-15.

Figure 3-15. A table with a fixed header and a scrollable body

Figure 3-14.
A basic table with an alternating
background color on the rows,
another color on the hover row, and
a fourth color on the hover cell

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

80

7656Ch03.qxp 11/16/06 11:34 AM Page 80

There are several methods to achieve this, and—as usual, thanks to Internet Explorer—
they can often be a little clumsy to implement. Most of them involve providing some CSS
to modern browsers and then using an extra container <div> and some extra CSS.
Examples include “Pure CSS Scrollable Table with Fixed Header” (www.imaputz.com/
cssStuff/bigFourVersion.html); an alternative “(Almost) Pure CSS Scrollable Table with
Fixed Header: Bullet Resistant Version” (www.imaputz.com/cssStuff/bulletVersion.html)
with extra browser support; and “CSS Scrollable Table” (www.agavegroup.com/?p=31),
which features a fixed header and footer with a scrollable middle.

Scripting tables
Finally, we come to enhancing your tables with JavaScript. Because you’re writing well-
formed, well-structured (X)HTML, many useful scripts can be used by simply linking to
them in the <head> of your document and usually also giving your table a specific id or
class attribute. The scripts can then apply behavior by traversing the DOM tree, and if for
some reason users don’t have JavaScript enabled, then the entire table is still available to
them in all its unscripted glory. This is one of the basic notions of modern-day scripting
(often referred to as DOM Scripting to distinguish itself from old-style DHTML) that
JavaScript-enhanced functionality be separated from the content layer (just as we separate
the presentation with CSS), so that in the absence of scripting support, the content
remains available—no more inline onmouseclick events for the modern web developer.

Some of the scripts I refer to in this section duplicate the effects from the “Styling tables”
section. Generally speaking, the only reason you would need to provide both script and
CSS is for compatibility with Internet Explorer 6 and below.9 When targeting Internet
Explorer only, it is worth considering using conditional comments to filter your scripts to
only that browser. A quick aside, then, to explain how these work.

Conditional comments

Conditional comments appear as regular (X)HTML comments to all browsers except for
Internet Explorer. This means that you can include content or markup inside a conditional
comment, and only Internet Explorer will take any notice of it. As these forms of com-
ments have been knowingly built into the browser, they’re not going to suddenly stop
working. They’re not dependent on a browser bug or quirk, and Microsoft recommends
using them in place of hacks.10

A typical (X)HTML comment looks like this:

<!-- this text is commented out -->

TABLE MASTERY

81

3

9. Unless you consider the effect to be more behavioral than presentational, in which case, just use the
scripts for all browsers and forget the CSS equivalent.

10. See http://blogs.msdn.com/ie/archive/2005/10/12/480242.aspx

7656Ch03.qxp 11/16/06 11:34 AM Page 81

A conditional comment inserts an if statement into that comment, like this:

<!--[if IE]> this text is now visible only ➥

to Internet Explorer <![endif]-->

You’re not limited to inserting just textual content in there—you can place @import rules
for importing Internet Explorer–specific style sheets or <script> tags for including
Internet Explorer–specific JavaScript. You can even specify which version, or versions, of
Internet Explorer you intend to target, for instance:

<!--[if IE 5.5]> this text is now visible only ➥

to Internet Explorer 5.5 <![endif]-->

Or perhaps you might want to only target versions of Internet Explorer with a version
number of less than 6?

<!--[if lt IE 6]> this text is now visible only ➥

to Internet Explorer 5.5 and below <![endif]-->

You can also use lte, which means “less than or equal to,” and also gt (“greater than”) and
gte (“greater than or equal to”).

And that’s conditional comments in a nutshell. If you have any script or CSS that’s specific
to Internet Explorer, it’s good practice to use conditional comments to target Internet
Explorer rather than relying on browser bugs and hacks, which could stop working when a
new version comes along.

Hovering with scripts

Let’s start with something simple: replicating the :hover effect on table rows and cells. I’ve
seen a few ways of doing this, but the simplest, leanest method is Patrick Griffiths’s
“Suckerfish :hover” (www.htmldog.com/articles/suckerfish/hover). The script can be
used to add :hover to any element by just changing the referenced element in the open-
ing lines, and it’s pretty seamless, requiring you to only include the script on your page and
change your style sheet from

tr:hover {background-color: red;}

to

tr:hover, tr.sfhover {background-color: red;}

Simple.

And yes, Internet Explorer version 7 does fix a lot of those hacks, so consider
yourself warned! You can find a detailed list of the Internet Explorer 7 fixes at
http://blogs.msdn.com/ie/archive/2006/08/22/712830.aspx.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

82

7656Ch03.qxp 11/16/06 11:34 AM Page 82

What about those zebra stripes? You have a few ways to add them. The simplest script I’ve
seen to achieve this is “Automatic coloured rows” (http://bitesizestandards.com/
bites/automatic-coloured-rows) by Juan Ignacio Serra. Weighing in at only nine lines
long, it’s simple and does exactly what you need: it loops through a table and applies a
class name to alternate rows.

A slightly more complex and robust method is “Splintered Striper” (http://24ways.org/
advent/splintered-striper) by Patrick H. Lauke. This script is not actually limited to
tables—it can accept any type of parent element (and, if specified, only those with a spe-
cific class name). It can also assign two or more class names to the child elements (for mul-
ticolored stripes, if that’s what strikes your fancy), it preserves any existing classes already
applied to the child elements (the first script overwrites them), and it takes all of these
options as parameters when you call the script on your page, so the one script can be used
for a variety of uses.

Alternatively, if you’d like to have both a hover effect on your table rows and a zebra
stripe effect, you could use the script provided by Matthew Pennell in his blog entry
“Stripe your tables the OO way” (www.thewatchmakerproject.com/journal/309/
stripe-your-tables-the-oo-way). This script achieves both tasks: it loops through a table
and applies an alt class name to every other <tr>, and then it adds onmouseover and
onmouseout functions for the hover effect.

Table sorting

If you’ve ever visited websites that include database-driven tables (e.g., eBay), then you
may have noticed many of them allow you to sort the data in various ways by clicking the
table headers. The way these web applications usually control this effect is by submitting
that mouse click to the server and reloading the data in the desired order. But the user
already has the data downloaded, so time can be saved by providing a JavaScript-based
sortable table.

Stuart Langridge came up with a script that does just that: http://kryogenix.org/
code/browser/sorttable. It’s a drop-in solution—you include the script in your page, add
a class and id to your table, and your plain-vanilla table will then feature clickable head-
ers, sorting each column in ascending or descending order as per the user request. It can
even sort different data types. See Figure 3-16 for an example.

When implementing functionality with JavaScript, it’s usually worth providing a
server-side version that can be used if JavaScript is not available on the client side.

TABLE MASTERY

83

3

7656Ch03.qxp 11/16/06 11:34 AM Page 83

Figure 3-16. A sortable table

Alternatively, you could use the following solution provided by Neil Crosby: www.
workingwith.me.uk/articles/scripting/standardista_table_sorting. This solution
goes a little further than the previous script, with a wider range of support browsers and
also an awareness of <thead>, <tfoot>, and <tbody>, but it is also a drop-in solution,
requiring you to only include some JavaScript and give your table a specific class name.
See Figure 3-17 for an example.

Figure 3-17. Another sortable table

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

84

7656Ch03.qxp 11/16/06 11:34 AM Page 84

Summary
This concludes our examination of (X)HTML tables. They’re not nearly as obsolete as you
may have imagined, and they are far more complex than the average WYSIWYG editor lets
on. With just a little work, tables can be made more accessible to both users of visual
browsers and users of assistive devices, and they can also be made more semantic and
more amenable to being styled and scripted cleanly and effectively.

TABLE MASTERY

85

3

7656Ch03.qxp 11/16/06 11:34 AM Page 85

7656Ch04.qxp 11/16/06 11:31 AM Page 86

4 FORM MASTERY

7656Ch04.qxp 11/16/06 11:31 AM Page 87

We now turn our attention to forms, which—let’s be honest—very few people really enjoy
either creating or completing (but try not to let that put you off reading this chapter).
Form markup has been with us for many years, appearing at least as early as the HTML 2
specification and not changing in any remarkable way since then. In essence, they’re very
simple things—they allow the user to input some data at one end, and then send that data
on to the other end via a form handler that deals with it. Think of forms as the HTML
equivalent of an intermediary for your data, located between you and the website.

It is fairly easy to create forms—just insert a couple of <input> tags, add a bit of text, slap
a submit button on the end, and then you get to go home early—but it is a lot harder to
create forms that are usable, accessible, and attractive. And although there’s a lot you can
achieve with markup alone, to create the ultimate usable form, you’ll invariably have to
turn to JavaScript or server-side code (or both) to help you with validating inputted data
and providing users with appropriate and meaningful feedback in a timely fashion.

These are not things that should be left to the last minute. Your form may be the most
important part of your website, particularly if it’s a form that allows people to enter their
credit card details, so it should be a model of simplicity and ease of use. It should not
upset people, anger them, or put them off—it seems odd to have to say that, but I’ve seen
some terrible forms in my time that did just that.

As with the previous chapter, I begin this chapter by working through the available form
markup, examining how best to use the different types of form controls and how to
enhance usability and accessibility with simple structural markup, before looking at some
good practices when it comes to the functionality of your forms. After that, I cover how to
enhance your forms with styles and scripts.

Form markup
Form markup is actually not that complicated, but like anything in (X)HTML, it can be used
well, leading to well-formed, usable forms, or it can be used poorly and inappropriately,
leading to needlessly complex and inaccessible forms. Let’s take it all in, one step at a time.

The form container

A form consists of two things: a <form> container and any number of form controls within
that container (plus any other body markup: paragraphs, headers, phrase elements, etc.).
The <form> element itself is quite simple, existing only as a container with a handful of
attributes: action, method, enctype, accept, accept-charset, and name.

Even though <form> is a block-level element, bear in mind that if you’re writing
XHTML, individual form controls must be contained within a further block-
level element—generally a <div> or a <p>—in order to validate. Form controls
are all inline-level elements, so you can place them adjacent to each other
within a single block container, should you so desire.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

88

7656Ch04.qxp 11/16/06 11:31 AM Page 88

The action attribute tells the user agent what it’s supposed to do with the contents of the
form when the form is submitted (usually with a submit button, another form control; but
you can also submit some forms by just pressing the Enter key when a text input has
focus). (X)HTML does not actually provide any native mechanism for dealing with form
data. All it can do is pass on the information to a form handler (a web page or script),
which can be written in PHP, Perl, ASP, and so on.

The method attribute informs the user agent
how the form data should be passed to the
form handler. The two possible values are get
and post. When the get value is used, form
data is sent to the form handler in the form of
a query string. For instance, the basic form
shown in Figure 4-1 has a method value of get
and an action value of formhandler.php.

When you submit this form, the URL in your
browser’s address bar looks something like
this:

formhandler.php?name=paul+age=27+gorgeous=yes+single=yes

When the post value is used, those values are not visible in the URL. The general rule of
thumb is that if the form submission is active (i.e., modifying a server-side database in some
way), your form should post.

If the form submission is passive, such as a search engine query, then use get. An advan-
tage of having the queries visible in the URL is that you can bookmark a specific search
query for repeated use.

The enctype attribute is used to specify which MIME type should be used to encode the
form data. If this attribute is left out of the markup, then the form will default to a MIME
type of application/x-www-form-urlencoded, which should be suitable for most forms,
unless the form is using a file input element (described further shortly), in which case this
attribute should contain a value of multipart/form-data, allowing it to cope with pro-
cessing binary code.

The accept attribute is also used when a file input element is in use. This attribute accepts
a comma-separated list of MIME types pertaining to acceptable file types to upload to the

When using the get value, only ASCII characters may be included in the query string.
Forms sent with the post method have no such restriction.

Most browsers will warn you after the form has been submitted that if you return to the
submission page, your information may be posted again to the server, possibly resulting
in duplicated modifications to the database (such as payment details).

FORM MASTERY

89

4

Figure 4-1.
A basic form

7656Ch04.qxp 11/16/06 11:31 AM Page 89

server. For instance, if you include within your form the ability to upload JPG and GIF
images to the server upon form submission, but you want to prevent users from upload-
ing any other form of file, you would use an accept attribute like this:

<form accept="image/gif,image/jpeg,image/jpg">

Related to the accept attribute is the accept-charset attribute, which allows you to spec-
ify which character sets are permitted, such as ISO-8859-1 or UTF-8. Again, this attribute
can be a comma-separated list of values if several character sets are acceptable.

Finally, the name attribute, used to identify the form to styles and scripts, is valid markup,
but it was only included within the HTML 4 specification for backward compatibility. Instead
of name, authors should use the id attribute for identifying their forms. However, within the
form, all form controls that are passing data to the form handler must have a unique name
attribute, otherwise it will not be possible to pass their values on to a form handler.

When a form is submitted, a process occurs to determine what data actually gets sent and
what gets left behind. For data to be successfully sent, it must come from a control that
has a control name paired with its current value, as shown in this example:

<input name="fullname" type="text" value="paul" />

The name/value pair here is fullname/paul. If the form was submitted using the
get method, then the query string appended to the URL would be formhandler.
php?fullname=paul.

Input

The <input> element is a self-closing inline element, like an image or a line break, so if
you’re writing XHTML, remember to include the closing forward-slash, and remember to
enclose the element within a block element such as a paragraph:

<p><input /></p>

How the <input> element behaves and displays is dictated by the type attribute, which can
take values of text, password, file, checkbox, radio, hidden, reset, submit, and button. If
no type is specified, current web browsers assume it to be a text input.

As I cover the input types in the sections that follow, I provide screenshots for some of
them, which show the controls as they appear in Camino, a Mac browser that uses the
Gecko rendering engine (the same engine that Firefox, Mozilla, and recent versions of
Netscape use). Because pretty much every browser on every operating system has a
slightly different way of rendering form controls (and Camino uses the OS X widgets),
don’t be surprised if what you see here doesn’t exactly match up to what appears in
your own browser. That said, although they may appear differently depending upon the
environment, the functionality of the types remains identical across all systems, and the
visual differences should not be so radical that you wouldn’t be able to recognize a sub-
mit button in Internet Explorer after only seeing it in Safari.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

90

7656Ch04.qxp 11/16/06 11:31 AM Page 90

The type attribute is used in all cases like so:

<input type="[value]" />

text
A text input is used, unsurprisingly, for typing text into. This is a single-line control and nor-
mally appears in the form of a rectangular box with an inset border, as shown in Figure 4-2.

The allowed length of the input string can be
specified with the addition of a maxlength
attribute, which takes a numerical value equat-
ing to the maximum number of allowed charac-
ters. There is no feedback mechanism provided
in the event that the user tries to insert more
than the allowed number of characters—the form control just ceases to accept extra char-
acters and will truncate an overlong string if such a string is pasted into the control. If you
wish to alert users that they’ve run out of room, you’ll need to use JavaScript.

You can also include a value attribute that presets the content of the text control:

<input type="text" value="Insert text here" />

Furthermore, a readonly attribute is available that prevents the text input content from
being modified from its initial value. This is a Boolean attribute, so if you’re writing HTML,
you can simply use this:

<input type="text" value="You can't touch this" readonly />

whereas in XHTML you would write this:

<input type="text" value="You can't touch this" readonly="readonly" />

password
A password input is functionally almost identical to a text input; it shares the same possi-
ble attributes. The only difference is that character input is masked upon entry, usually by
a series of dots or asterisks, as shown in Figure 4-3.

This type of input is not very secure—the form
data will still be transmitted as plain text and
will be visible in the URL if your form uses the
get method. This masking is really only to hin-
der anybody peering over your shoulder from
knowing the input (e.g., when you’re in a public place and you’re logging in to a site).

file
A file input usually takes the form of a text input box followed by a Browse button, as
shown in Figure 4-4. It appears as two controls, but it is actually only one.

FORM MASTERY

91

4

Figure 4-2.
A text input

Figure 4-3.
A password input

7656Ch04.qxp 11/16/06 11:31 AM Page 91

The file input control allows you to browse for a file on your local network. Once you
have selected the file, the file path is then inserted automatically into the contents of the
text input field, as shown in Figure 4-5.

As with the text and password inputs, the value attribute can be used here to prefill the
file path field. The accept attribute, described earlier, can also be used within this type of
input to restrict the permitted types of files uploaded (but you will probably also need a
server-side filter as well, just to be sure).

Safari is notable in that it is the only current browser that renders a file input in a different
way from that described earlier. Whereas in other browsers, the file input control
appears as two controls, Safari displays this control as shown in Figures 4-6 and 4-7.

Figure 4-6. A file input control in Figure 4-7. A file input control in
Safari, before the file has been selected Safari, after the file has been selected

It’s not incorrect of Safari to display the control in this way, and it may have something to
do with removing a security risk of a file input being used as a password input.1 A down-
side of this approach, though, is that because the contents cannot be edited after a file has
been selected (all you can do is change which file is being uploaded), it means users can-
not back out of uploading a file once they submit the form, unless they reset or reload the
entire form and start again.

checkbox
A checkbox input takes the form of a square box, with a check mark or an
“x” character appearing when the box is selected, as shown in Figure 4-8.

As with all the input types so far, you can preset the state of the check box,
but rather than using the value attribute, you instead use the checked attribute. Like the
readonly attribute, checked is a Boolean attribute, so if you’re writing HTML you don’t
need to quote the value, but in XHTML you do.

radio
A radio button input takes the form of a circular inset, with a dot appear-
ing inside the circular inset when the radio button is selected, as shown in
Figure 4-9.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

92

Figure 4-8.
Two check boxes, one
checked and one not

Figure 4-9.
Two radio buttons,

one selected and
one not

Figure 4-4.
A file input

Figure 4-5.
A file input after a

file has been selected

1. See https://bugzilla.mozilla.org/attachment.cgi?id=17860&action=view.

7656Ch04.qxp 11/16/06 11:31 AM Page 92

You use radio buttons to indicate that only one choice out of several—
a radio group—can be selected. Figure 4-10 shows an example of a
radio group.

To indicate to the user agent that a radio button is part of a group,
you use the name attribute, giving each radio input element an iden-
tical name value. When the form is rendered, the user agent will not allow more than one
radio input to be selected if that input shares a name value with another. Here’s the markup
for the preceding example:

<input type="radio" name="cheese" value="Cheddar" /> Cheddar
<input type="radio" name="cheese" value="Stilton" /> Stilton
<input type="radio" name="cheese" value="Brie" /> Brie

The state of a radio button can, like a check box, be preset with the checked attribute.

hidden
A hidden input element is used to include extra data within a form that is not visible to the
user but is submitted along with the rest of the form data:

<input type="hidden" name="hiddenValue" value="42" />

reset
A reset button input resets all form controls within the same form to their initial values.
Including a reset button used to be a common practice, but it’s since become unfashion-
able due to the high risk of users accidentally resetting their form instead of submitting it.
Without any undo function, reset buttons are of little use and should be used with caution,
if at all.

Come on, we’ve all done it: reached the end of a form, tabbed to what we thought was
the submit button, pressed Enter, and watched in despair as all our form data promptly
vanished. If you’re ever thinking of including a reset button on a form, just try to
remember how many times in the past you have filled in a form, reached the end, and
thought, “Actually, I think I’ll just delete all of that and not bother.” Exactly.

For the same reason, I also strongly recommend avoiding Cancel buttons that return
users to the previous page—the browser’s Back button achieves the same thing and is
harder to click accidentally. (An exception to this is when using a Previous button
causes an application/form data to be saved, in which case it’s actually preferable to
using the browser’s Back button.)

A real-world form would also include form labels, but we’ll get to those in the section
titled “Added structure.”

FORM MASTERY

93

4

Figure 4-10.
A group of radio
buttons

7656Ch04.qxp 11/16/06 11:31 AM Page 93

submit
A submit button is used to submit all the form data to the file indi-
cated in the form’s action attribute. Figure 4-11 shows an example.

It is also possible to use an image as a submit button, using an input with a type of image and
an additional src attribute that points to where the image file resides on the server, just like
an . Also like an , remember to include an alt attribute for accessibility reasons.

Using an image for a submit button will also send x and y coordinates (the x and y coordi-
nates of the part of the image you clicked) along as values; this is for when image submits
are being used in conjunction with a server-side image map, as discussed in the previous
chapter. And if your image has a name attribute, that will also get sent along with those
coordinates. For instance, if your form has a method attribute of get, an image submit but-
ton like this:

<input type="image" name="imagesubmit" />

will pass values like this:

formhandler.php?imagesubmit.X=10&imagesubmit.Y=20

These extraneous values don’t do any harm when they’re submitted along with the rest of
the form data, so don’t worry about them. If you really want to prevent them from show-
ing up in the URL, then you can change the method attribute of the form from get to
post, which will hide all values from the user, as discussed earlier.

button
The input type of button creates a push button in the same style as a reset or submit but-
ton, but the difference here is that it has no default action. It can be clicked, but it won’t
do anything or have any affect on your form unless you specify this with a script or an
event handler, discussed later in the section “Scripting forms.”

Other input types
There are two more input types that I want to mention, but I’ll stress now that they are not
part of any current HTML specification, so their use will cause your document to fail vali-
dation. These types are search and range. The former is currently supported only by Safari
(and has not, to my knowledge, been submitted by Apple to any standards working group
for inclusion in any formal specification); the latter is supported by both Safari and Opera,
and appears in the current Web Forms 2.0 draft specification at http://whatwg.org/specs/
web-forms/current-work/#range (see Chapter 7 for more information on Web Forms 2.0).

What do these input types do? Well, search takes a text input control and turns it into a search
control more like those used throughout the OS X environment, as shown in Figure 4-12.

Figure 4-12. A search control in the OS X Mail application

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

94

Figure 4-11.
A submit button

7656Ch04.qxp 11/16/06 11:31 AM Page 94

Apple also created several attributes to use within this proprietary input type: incremental,
placeholder, autosave, results, and a new event handler called onsearch. The incremental
attribute controls whether the search occurs straight away (using a handler defined in the
onsearch or onkeypress attribute), the placeholder attribute is used to insert some grayed-
out default text (but it’s probably better to use value in this case so that nonsupportive
browsers still get it), the autosave attribute allows you to set its value to a name of your
choice, allowing visitors to return to your site in the future and re-search with the same
search queries, and the results attribute controls how many past searches are displayed in
the drop-down menu (and is a required attribute if you want that drop-down to appear at
all). Thus, the following code results in the field and drop-down shown in Figure 4-13:

<input type="search" autosave="search.joeblade.com" results="5" />

A range input creates a slider control that defaults to returning a value of 0–100 (the
allowed range can be controlled with the min and max attributes). The following code will
appear as shown in Figure 4-14 in Safari and Opera:

Enter a value between 0 and 11: <input type="range" min="0" max="11" />

Figure 4-14. A range input field in Safari

The preceding code will appear as shown in Figure 4-15 in all other browsers.

Figure 4-15. A range input field in nonsupporting browsers

Am I really suggesting using invalid, proprietary markup in your document? Well . . . possi-
bly. In the grand scheme of things, I think there have been far worse crimes against HTML,
and unlike some previous proprietary markup, such as Microsoft’s <marquee>, using these
new types doesn’t cause any known harm to nonsupportive browsers or prevent the form
from being usable—they degrade gracefully to standard text input controls (as the
default type value of an input is text, a browser that does not recognize the contents of
the type attribute will revert to that default value). Yes, they’re invalid, so their use may
cause you mild feelings of guilt and anxiety if maintaining validity is important to you, and
there is the possibility, however remote, that a minor browser exists somewhere (either
now or in the future) that will break horribly when faced with invalid markup, but I think

Figure 4-13.
A search input field

FORM MASTERY

95

4

7656Ch04.qxp 11/16/06 11:31 AM Page 95

that it’s a minimal amount of extra work that offers a minor benefit to a small audience
and has few downsides, so I’m not going to lose too much sleep over it.

If validity is important to you—and it’s no bad thing if it is—then you might consider using
a DOM script to dynamically include those invalid attributes, so your markup remains valid
but Safari still gets the enhanced search. Markus Stange has created such a script, which
you can find at http://tests.themasta.com/safari.

Returning to the world of standards, the <input> element has several attributes that are
shared across multiple types of input. These values include size, which takes a numerical
value and converts it to either a pixel width in the case of submit or button types or a num-
ber of characters in the case of text and password inputs, and disabled, which prevents the
form control from being used. An element with the disabled attribute set will not receive
focus, it will be skipped during tabbing navigation, and its values will not be submitted.

Other forms of input

Although the <input> element offers a wide range of options, other methods of providing
users with the ability to input data are available—namely, the <textarea> and <button>
elements.

The <textarea> element is similar in some ways to the text input element, but it allows
multiple lines of input rather than just one. It uses a pair of attributes, cols and rows, to con-
trol its size, and instead of using a value attribute to preset any textual content, it uses the
content of the element itself. It’s a container element, rather than a self-closing element.

The following code creates a <textarea> that is 20 columns wide and 5 rows high (a scroll-
bar will appear if the input exceeds the visible area). The result is shown in Figure 4-16.

<textarea cols="20" rows="5">Type your content here</textarea>

The <button> element is much like an <input> with a type value of button, but they
differ in that the <button> can contain content:

Figure 4-16.
A <textarea> 20 columns
wide and 5 rows high

This is something to consider—if your form control is using a disabled attribute, does
it even need to be visible in your form? Speaking as a user, it can be quite frustrating to
be able to see a control but not be able to use it (and not know why I can’t).

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

96

7656Ch04.qxp 11/16/06 11:31 AM Page 96

<button type="submit" value="submit">➥

 click me!</button>

The code preceding would normally render as shown in Figure 4-17.

Honestly, though, there’s no good reason to use <button> in
place of <input type="button" /> or <input type="image"
/>, particularly as Internet Explorer has issues discerning the
correct value to pass to the server (it submits the content of
the <button>, rather than the value contained within the value
attribute). Although <button> allows you to create buttons
that contain a combination of other elements (paragraphs, tables, etc.) instead of either
text or an image, I can’t imagine any situations where that would be required.

Finally, there also exists a deprecated <isindex> element. Web authors should use <input
type="text" /> instead, as it does the same thing as <isindex> and is still current.

Menus

The <select> element is a container element, allowing any number of
<option> and <optgroup> tags. It normally displays as a drop-down list,
as shown in Figure 4-18.

This element has only three specific attributes: name, size, and multiple. The name attrib-
ute is used here to identify the control, and in the case of <select> it is not optional—
every <select> must have a name. The size and multiple attributes are related. If the
multiple attribute is set (multiple="multiple" if you’re writing XHTML; otherwise, just
multiple will do), then the <select> menu will normally display as a scrollable list box to
permit multiple selections by the user, and the size attribute, which accepts a numerical
value, determines how many rows of options are displayed. Figure 4-19 shows an example
of a list menu.

Each row within a <select> is contained within an <option> tag, like so:

<select name="cheesemenu">
<option>Cheddar</option>
<option>Stilton</option>
<option>Brie</option>

</select>

The <option> tag has three specific attributes: selected, value, and label. The selected
attribute is used to indicate to the user agent that a particular <option> should be
selected initially; without it, the browser may display either nothing at all (just a blank
select box) or the first <option> it encounters.

Figure 4-19.
A list menu, created
with a <select> with an
attribute of multiple

FORM MASTERY

97

4

Figure 4-17.
A <button> containing an
image and some text

Figure 4-18.
A <select> menu

7656Ch04.qxp 11/16/06 11:31 AM Page 97

<select name="cheesemenu">
<option>Cheddar</option>
<option selected="selected">Stilton</option>
<option>Brie</option>

</select>

The preceding markup renders as shown in Figure 4-20.

Figure 4-20. A <select> menu with the second option preselected

Multiple <option> tags can have the selected attribute set, but only if the <select> has
the multiple attribute (see Figure 4-21).

A <select> that lacks the multiple attribute cannot have more than one <option> initially
selected (after all, how would it be displayed?).

The value attribute is used here to allow the submission of a value that differs from the con-
tent of the <option>, and if it is not present, then the content is instead used as the value:

<select name="cheesemenu">
<option value="ch01">Cheddar</option>
<option value="ch02">Stilton</option>
<option value="ch03">Brie</option>

</select>

Finally, we come to the label attribute. This attribute is designed to accept a short value,
to use in lieu of displaying the content of an <option>. The menu in Figure 4-22, for
instance, contains one <option> that is much longer than the others.

Figure 4-22. A <select> menu with one option much longer than the others

This can be a problem if the menu is in a narrow location such as a fixed-width column. The
label attribute can be used to provide an alternative display label, while still retaining the
original content for the value passed to the server. The code for this looks like the following:

<select name="cheesemenu">
<option>Cheddar</option>
<option>Stilton</option>
<option>Brie</option>
<option label="All">All of the cheeses in all of the worlds</option>

</select>

Figure 4-21.
A list menu with
multiple selections

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

98

7656Ch04.qxp 11/16/06 11:31 AM Page 98

Sadly, Internet Explorer does not support this attribute, so it cannot be relied upon, but
there’s no harm in providing it for supporting browsers, as it does not adversely affect the
functionality of the form for nonsupporting browsers.

To help provide structure to your menus, you can use the <optgroup> element to group
similar <option> elements. So, instead of the following markup:

<select name="cheesemenu">
<option>- - - English cheeses - - -</option>
<option value="cheddar">Cheddar</option>
<option value="stilton">Stilton</option>
<option> - - - French cheeses - - -</option>
<option value="brie">Brie</option>

</select>

you would use this:

<select name="cheesemenu">
<optgroup label="English cheeses">
<option value="cheddar">Cheddar</option>
<option value="stilton">Stilton</option>

</optgroup>
<optgroup label="French cheeses">
<option value="brie">Brie</option>

</optgroup>
</select>

The preceding markup would render as shown in Figure 4-23.

The label attribute used here is supported across browsers. A benefit of using <optgroup>
tags to divide your <option> elements is that the <optgroup> label cannot be selected, nor
can its value be submitted as data, whereas in the former example the web author would
either have to live with erroneous submissions or provide a client- or server-side validator
to ensure such dividers had not been submitted. Also, using <optgroup> is a clear example
of using the right tag for the right job, and that’s why we’re all here.

Figure 4-23.
A <select> menu
organized with multiple
<optgroup> elements

FORM MASTERY

99

4

7656Ch04.qxp 11/16/06 11:31 AM Page 99

User agents are not actually limited to displaying <optgroup> menus, as in Figure 4-23. The
HTML 4 specification suggests displaying the menu as an unfurling, cascading menu, and
this is exactly how Internet Explorer for the Mac does it, as shown in Figure 4-24.

Figure 4-24. <optgroup> elements as rendered by Internet Explorer for the Mac

As far as I know, Internet Explorer for the Mac is the only browser that displays <optgroup>
menus in such a way, and as development of this browser has long since been abandoned,
it’s reasonably safe to consider this display method as obsolete.

Added structure

The <fieldset> element allows web authors to divide form controls into thematically
linked sections, making it easier for users to work through the form while also enhancing
accessibility for assistive devices. Most browsers will display a <fieldset> with a simple
border. For instance, the following markup displays the results shown in Figure 4-25:

<fieldset>
<select name="cheesemenu">
<option>Cheddar</option>
<option>Stilton</option>
<option>Brie</option>

</select>
<input type="submit" value="submit" />

</fieldset>

Figure 4-25. A <fieldset>

You cannot validly nest <optgroup> tags, but the HTML 4 specification does suggest
that browser vendors prepare for the possibility of that feature turning up one day in a
future specification. At the time of this writing, it does not appear that any browser ven-
dor has done so.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

100

7656Ch04.qxp 11/16/06 11:31 AM Page 100

To identify each <fieldset>, you must use the <legend> attribute:

<fieldset>
<legend>Cheeses of the world</legend>
<select name="cheesemenu">
<option>Cheddar</option>
<option>Stilton</option>
<option>Brie</option>

</select>
<input type="submit" value="submit" />

</fieldset>

The form will now look something like Figure 4-26.

The last form element to mention, <label>, also increases both usability and accessibility.
This element is used to form an association between a textual label and a form control. In
visual browsers, a user can then bring focus to the form control by clicking the associated
label text as well as within the control itself.

There are two ways of including clickable labels in the markup. The first is by enclosing the
form control within <label>:

<label>Stilton <input type="checkbox" ➥

name="ch" value="stilton" /></label>

In the preceding example, the word “Stilton” causes the subsequent <input> to gain focus.
This is nice and simple, but there are two downsides: Internet Explorer won’t understand
what you’re trying to do, and it requires the label and control to exist together in the
source markup. An alternative solution is to use the for attribute:

<label for="stilton">Stilton</label> ➥

<input type="checkbox" id="stilton" name="ch" value="stilton" />

The preceding statement is true in browsers except Safari. At the time of this writing, Safari
offers no support for clickable labels, but you can try adding a dash of JavaScript to bridge
the gap for now. See www.chriscassell.net/log/2004/12/19/add_label_click.html
for more details.

Figure 4-26.
A <fieldset> with a <legend>

FORM MASTERY

101

4

7656Ch04.qxp 11/16/06 11:31 AM Page 101

Using the for attribute can be laborious. Each form control requires a unique id attribute
to pair up with the label’s for value, which involves a fair amount of hand-coding if your
form is long. However, using labels in this way does mean Internet Explorer will understand
how a label relates to a control. Another benefit of using the for attribute is that you do
not have to keep the form control within the confines of the <label>, which is useful if
your labels and controls cannot exist near each other—for instance, if you’re using a table
to lay out a form, with labels in one column and controls in another (which, ideally, you
shouldn’t be doing).

Finally, aside from some form-specific event handlers that I discuss in the section
“Scripting forms,” all form controls can use the tabindex and accesskey attributes
described in Chapter 2. To reiterate, I believe these attributes to be of dubious value and
feel they should be used with caution, and without the assumption that their inclusion
automatically and dramatically increases the accessibility or usability of your website. You
can usually negate any need for a tabindex attribute by placing your form elements in a
logical order within your source markup, and the accesskey attribute suffers from a lack
of consistency across sites and also from a lack of discoverability within the browsing envi-
ronment. Personally, I never use either of them, and I do not recommend anybody else use
them either.

Form usability

As mentioned earlier, it is easy to create a form, but it is much harder to create a really
good form. Although in-depth knowledge of all the available form markup will help, it’s
not enough. Because a form is more of an application than a web page, you need to con-
sider usability seriously. If your form is the point at which the general public starts giving
you money, you need to test your form rigorously, observe people using it and record
their reactions (even if your audience is just a few colleagues from the other side of the
office), and make sure it works as well as it possibly can.

Exhaustive coverage of the subject of form usability is well beyond the scope of this book,
but the guidelines outlined in the following sections should be enough to help you avoid
some common form usability problems. Beyond the information you’ll find in this chapter,
I recommend reading Don’t Make Me Think: A Common Sense Approach to Web Usability
by Steve Krug (New Riders Press, 2000) and Defensive Design for the Web: How to Improve
Error Messages, Help, Forms, and Other Crisis Points by 37signals (New Riders Press, 2004),
both of which cover the topic in greater depth.

You may have noticed, by the way, that I’m talking about form usability before form
styling—this is because it is more important that your form works well than looks good.
Styling can come after you’ve made sure the form doesn’t make people cry.

Use the right tag for the right job
So, you know about every input type there is, but which one is appropriate to use in a
given situation? Some of these are obvious—a file input has only one purpose, and no
other type of input can be used in its place—but what about, for instance, check boxes
versus radio buttons?

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

102

7656Ch04.qxp 11/16/06 11:31 AM Page 102

A good rule of thumb is that if you have a list of two or more options, and the user must
select one and only one of them, use radio buttons. Selecting one radio button should
then deselect any other radio button that is part of the same named group. But if the list
contains many options to select from, consider using a <select> menu instead. You’ll
retain the inability to select more than one option, and you’ll save some space (at the
expense of “discoverability”).

Check boxes, on the other hand, are used when there are several choices to make, and
users can leave them all blank or select as many as they like. Checking one check box does
not deselect any others within the group. The menu equivalent of a series of check boxes
is a <select> menu with the multiple attribute present, but check boxes are generally
easier to use as they do not require the user to understand what keyboard/mouse combi-
nation to use (Ctrl-click? Command-click? What about keyboard-only users?), so you may
wish to avoid multiple-select lists where possible.

You should also use a check box when there is a single option that users can switch on or
off, such as agreeing for their data to be passed along to third-party companies. You would
not use a radio button here because a radio button can only be deselected by selecting
another.

Remember also to use labels, field sets, and legends to aid in both usability and accessibility.

Keep it short and simple
Collect only the information you need, and no more than that. Do you really need to know
if I’m a Mr. or a Ms.? Do you really need my fax number? My occupation? My annual salary
in dollars? Question the presence of every field you have in your form, and if it’s a com-
pulsory field, question again whether it needs to be. Your marketers may relish the oppor-
tunity to collect reams of personal data about your site visitors, but the longer your form
is and the more irrelevant users start perceiving it to be, the higher the risk that they’ll
abandon it.

Don’t make me think, don’t make me work, and don’t try to
trick me
Make your form as easy to complete as possible. If at any point a user has to pause for a
few seconds to try and work out what’s gone wrong or what you mean, then that’s a few
more seconds when he might just think “Oh, forget it” and go off to make a sandwich. So,
for instance, if your form contains compulsory fields, then let users know, as clearly as pos-
sible, which fields they are by making the labels bold, coloring the field background yellow,
or adding the word Required somewhere in the label.2 Whatever you do, make it clear from
the beginning the fields that must be filled in, and don’t wait until the form has been sub-
mitted and reloaded to tell users. Furthermore, please consider avoiding autotab functions,
where the cursor automatically hops to the next form field after users complete one.
Anybody who has ever attempted to go back to a field and correct a mistake in an autotab-
bing form will understand where I’m coming from on this; it’s incredibly frustrating.

FORM MASTERY

103

4

2. If you’re short of space, use an asterisk (*), but contain it within an <abbr> tag, with a title attribute
of “this form field is required.”

7656Ch04.qxp 11/16/06 11:31 AM Page 103

If you need data in a certain format, don’t rely on users entering it in that format—this is
what your form handler is supposed to deal with. For instance, if a user needs to enter a
credit card number, let her fill it in as 1234 5678 9012 3456 if she wants to (that’s how it’s
formatted on her credit card), or 1234567890123456, or 1234-5678-9012-3456—whatever
works for the user. The user doesn’t want to be slapped back because nobody wrote code
that converted her data into the appropriate format. Remember, computers are supposed
to save the user time, not the other way around. Provide a guide to a preferred format if
you like, but allow for the possibility of alternate entries.

If the user has made an error that can’t be solved by server-side code, then let him know
with a clear, meaningful, and appropriate error message—the sooner the better. Use
JavaScript for instant feedback, and provide server-generated validation and error mes-
sages as a backup. The more complex your form, the more things that can go wrong, so
test, test, test, and make sure there are no meaningless error messages such as “some sort
of error” or “form submission failed.” Provide the user with an explanation of the prob-
lem, the steps (if any) he can take to resolve the problem, some visual cues as to where
the problem lies, and some contact information if all else fails.

If you do find you have to reload the page, make sure that all fields (with the exception of
any password fields3) are now prefilled with the information the user just entered, including
any opt-in/opt-out check boxes. Many times forms will ask users if they want to opt out of
future mailings, only to then recheck the box when the page reloads. That’s just sneaky.

Remember that the Internet is global
If your form is not specific to any one country, try not to fill it with references to “states”
and “zip codes,” and certainly don’t make those fields compulsory if you do include them.
Also relating to the previous point, don’t try and restrict the format of the user’s data,
such as phone numbers. Maybe the user is from a country that has phone numbers with
an extra two digits plus a secondary area code—who knows?

Styling forms
As mentioned earlier, nearly every browser on every operating system displays form con-
trols in a slightly different way, ranging from the lickable aqua widgets of Safari to the
chunky beveled boxes of Firefox. When it comes to styling forms and their controls, the
first question you need to ask yourself is “Should I do this?”

For an exhaustive view on how operating systems display form controls, have a look at
Roger Johansson’s article “Styling form controls” at www.456bereastreet.com/archive/
200409/styling_form_controls.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

104

3. Why? Because for a password field to be prefilled, the value attribute must be used, meaning that the
password must appear, in plain, readable text, within the source markup. Someone could then view
that password just by sifting through your browser cache.

7656Ch04.qxp 11/16/06 11:31 AM Page 104

It’s one thing to adjust margins, padding, and alignments to lay out a form in a clear fash-
ion, but it’s quite another to start adjusting the way that buttons and check boxes appear.
They may differ a little from browser to browser, but they’re still fundamentally recogniz-
able to the user, and too much tweaking can lead to a lot of confusion with little gain.

Remember that forms are a two-way process: you’re not simply asking people to read
them, but also to interact with them, and I believe that in almost every case, it’s better to
leave the browser to just get on with rendering the controls in roughly the same way it
always does. It’s better for users, as their expectations aren’t being broken, and they can
set about completing the form using a familiar set of controls. At this stage, you don’t
want users to have to learn how to fill in your form; rather, the form should be made as
simple as possible to minimize the chances of users abandoning it halfway through.
Experimenting with new visual styles when users are simply trying to buy a book or com-
plete a magazine subscription order is a risky business.

On the other hand, this way of thinking leans a little toward the same sort of reasoning
that caused famous usability experts in the 1990s to insist that links should always be blue,
visited links should always be purple, and active links should always be red—and you’d
better make sure they’re underlined as well! So make of these suggestions what you will.
I’m simply expressing my opinion, and to be honest, I can’t back it up with any hard field
research, so (tempting though it is) I won’t insist that you never style form controls; I just
want you to think hard about it before you go wild. (And given how stubborn some
browsers can be when it comes to styling form controls, you may also save yourself quite
a few headaches.)

Enough grumbling and soapboxing—on with the show.

Layout

Laying out a form is the one area of modern web design where using tables for presenta-
tion may seem like the only option. In fact, many people will argue that forms are tabular
data, given that there is a relationship between text labels and form controls. Personally, I
think that’s a fairly tenuous argument, and I’ve found that in most cases forms only need
a little CSS loving to lay them out. If you find yourself in a situation where your form is so
complex that laying it out with CSS would just be too laborious, then it may be worth con-
sidering whether your form actually needs a bit of a rethinking, if possible.

The first thing we’re going to look at is an alignment issue: how to turn the form in Figure
4-27 into the form in Figure 4-28.

At the time of this writing, neither Safari nor Camino allows for the styling
of form fields, but this policy looks likely to change in the near future.

FORM MASTERY

105

4

7656Ch04.qxp 11/16/06 11:31 AM Page 105

Figure 4-27. An unstyled form Figure 4-28. A form with labels and inputs
neatly aligned

Figure 4-28 demonstrates perhaps one of the more common ways of presenting a form,
and the reason behind it is clear. By simply aligning the labels alongside the inputs, the
form becomes instantly neater and more professional-looking. You may previously have
achieved this effect by placing all of your markup in a two-column table—text labels on
the left, inputs on the right, and the left column cells all given align attribute values of
right—but this effect is actually pretty easy to achieve with a bit of CSS.

First, we have to ensure our markup is top-notch and free of extraneous elements (we’ll
need no line breaks here). Here’s a sample:

<label for="fullname">Your name: </label>
<input type="text" id="fullname" />

This is straightforward enough, and lean and accessible, but it will look a bit unappealing
in the browser. To start, let’s align the text within the label:

label {text-align: right;}

This won’t have much of a noticeable effect, so let’s make sure those labels are all the
same width, which involves not only setting a width, but also turning the label into a block
element:

label {text-align: right; width: 100px; display: block;}

These changes result in the form shown in Figure 4-29.

To get the labels and inputs back onto the same lines,
we’ll need to float the labels left, which causes the inputs
to wrap up and sit alongside them. We’ll also need those
labels to clear the floats, to prevent subsequent labels
from also wrapping up:

label {text-align: right: width: 100px; ➥

display: block; float: left; clear: left;}

Add we’re done. Figure 4-30 shows the final version.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

106

Figure 4-29.
A form with
block-level

<label> elements

7656Ch04.qxp 11/16/06 11:31 AM Page 106

Figure 4-30. The finished product

Your form doesn’t necessarily need to be laid out vertically. If you’ve used a couple of
<fieldset> tags to group your controls into related areas, it’s a simple matter of floating
them as required. We can turn the simple vertical form shown in Figure 4-31 into the hor-
izontal one shown in Figure 4-32 with this CSS:

fieldset {float: left; width: 50%;}

Figure 4-31. A form with two <fieldset>s

Figure 4-32. A form laid out horizontally

Even if your form isn’t using <fieldset> elements, that doesn’t mean you can’t lay out the
form nicely without recourse to tables as containers. It’s perfectly possible to include
<div>s within a form, and you can create the form shown in Figure 4-33 with just two
floated container <div>s:

form div {float: left; width: 50%;}

FORM MASTERY

107

4

7656Ch04.qxp 11/16/06 11:31 AM Page 107

Figure 4-33. Two containing <div>s, both floated left

Form controls styling

Styling form controls consistently and reliably across browsers is problematic, which is part
of the reason I suggest you apply only minimal styling. I do this myself with <textarea>
and <input> elements. Not being a fan of the beveled border many browsers show by
default, I tend to apply a slim-line CSS border instead (see Figure 4-34):

input {border: 1px solid #ccc;}

Figure 4-34. A text input with a single-pixel
border

This single-pixel border removes the 3D effect, but the text input is still recognizably a text
input. However, applying this border to all inputs, regardless of their type, is not always
desirable. For example, Figure 4-35 shows what happens when a single-pixel border is
applied to a radio button.

Figure 4-35. A radio button with a single-pixel border

While the text input now appears crisp and professional, the radio button has an unsightly
and unnecessary border. To prevent this, you need to be able to effectively say in your
markup, “Only style inputs that have a type of text.”

Selecting individual types of inputs can be a little trickier than it ought to be—because it’s
a single element that changes behavior depending on its type, you can’t target only text
inputs or only check boxes in the same way you can target a <textarea> or a <fieldset>.
You have two ways of going about this. The first is with CSS2 attribute selectors. The fol-
lowing example targets only those inputs that have a type attribute of checkbox:

input[type="text"] {border: 1px solid #ccc;}

But Internet Explorer 6 and below (and other older browsers) do not support attribute
selectors, so this solution is only viable for modern browsers. To make things backward-
compatible, all of your inputs need to be given a class name, and then you can either style
all inputs and override those classed as radio buttons and/or check boxes, or just target all
inputs classed as text inputs:

input.text {border: 1px solid #ccc;}

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

108

7656Ch04.qxp 11/16/06 11:31 AM Page 108

Alternatively, as each of your inputs should have a unique id so as to pair up with a <label>
(with its for attribute), you could save yourself a little work and target those instead:

#fullname, #address, #phonenumber, ➥

#age, #emailaddress {border: 1px solid #ccc;}

So, you can have messy markup and clean CSS, or clean markup and messy CSS. Pick the
solution that you find the least unsightly and run with it.

CSS as an aid to usability

Now that you’ve started tweaking the controls, you can also use the CSS to enhance the
usability of the form. To begin with, let’s make use of the CSS2 :focus pseudo-class to
help make it clearer to the user where they are in a form, by changing the background
color and the border style to stand out from the crowd:

input:focus {background-color: yellow;}

Figure 4-36 shows the results of the preceding markup.

Figure 4-36. A text input that
currently has the focus

Remember, though, that if you’re setting a background color on your input, you should
explicitly set a foreground color as well. Even if it all looks OK in your browser, you don’t
know what default font settings other people have, so if you’re in doubt, hard-code that
color in:

input:focus {background-color: yellow; color: black;}

Internet Explorer version 6 and below do not support :focus on any other element but
<a>, so nothing will happen in these cases.

The tech reviewer of this book, Ian Lloyd, has come up with a JavaScript solution
for removing CSS borders that involves applying the border to all inputs, but
then removing the border for check boxes and radio buttons after the page has
loaded. You can find his script at http://lloydi.com/blog/2006/08/30/
remove-css-borders-radio-checkboxes.

FORM MASTERY

109

4

7656Ch04.qxp 11/16/06 11:31 AM Page 109

The <legend> element is useful, as it aids in both usability and accessibility for all your
users. Styling it, however, can be a real pain because it’s impossible to override many of its
characteristics. For instance, you can’t set a width on a <legend>, nor can you set a height
or a margin value. You can’t float the element anywhere; you can’t use position:
absolute to try and break it out of the document flow; and if the contents of your
<legend> are too long, it will stretch your <fieldset> and break out of your layout, so you
need to manually insert
 tags where and if appropriate. It is one of the more
stubborn elements.

Happily, though, you can (to some extent) change border values and background colors,
and you can increase or decrease padding. Also, a wide range of CSS font properties are
open to you, so you’re not entirely left out in the cold (see Figure 4-37).

Figure 4-37. A heavily styled <legend>,
as seen at www.cssplay.co.uk/menu/form.html

Something I think worth considering is providing users with some visual feedback to indi-
cate that a <label> is actually clickable—something many people won’t realize except
through accidental discovery or by being otherwise told. You can do this using the cursor
CSS property, as follows:

label {cursor: pointer;}

The mouse cursor will change in most browsers when hovered over a <label>, as shown in
Figure 4-38.

Figure 4-38. A label being hovered over

It’s a very quick, simple addition, but you should use it with caution. As noted earlier, Safari
currently offers no support for clickable labels, which means users of this browser could
be confused when their cursor changes to indicate that a label can be clicked—and that
doing so achieves nothing. It’s also arguable that, as most operating systems also don’t
offer visual feedback for their own clickable labels in dialog boxes, options panels, and the
like, we shouldn’t attempt to provide it in our websites either. I disagree with that idea—if
providing visual feedback teaches people that labels can be clicked, then I don’t see it as a
bad thing. The lack of Safari support is a problem, but hopefully with enough nagging
from web designers, Apple will provide this functionality in due course.

Hard-coding the color is actually good advice to consider for all elements, not just form
controls. When Netscape 3 and 4 were still in mainstream use, it was often easy to spot
websites that had been tested in Internet Explorer only, because where Internet Explorer
defaulted to a white background, Netscape defaulted to gray—so unless the web
designer had explicitly set the body background to white, pages in Netscape would
often look terrible.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

110

7656Ch04.qxp 11/16/06 11:31 AM Page 110

Scripting forms
I’ll make this clear from the start: your form must work without JavaScript. I’ve repeated
this statement throughout this book, but it’s even more important in the case of forms,
because if you rely on client-side scripting for your form to successfully submit, then you
may be preventing people from using it, and those people may have websites, and they
may write disparaging things about you if you upset them. The golden rule as I see it is this:
if your form is using JavaScript to provide any sort of functionality, provide a server-side
version or HTML version where relevant, to ensure the form works without scripts
enabled.

So with that dire warning out of the way, let’s look at how you can enhance your forms
with JavaScript.

Validation

Client-side validation of form fields is a valuable aid to usability, as it provides users with
instant feedback, alerting them to any potential (or actual) problems with their submis-
sion. Sometimes this feedback is provided at the end of the form, when users click the
submit button, but it’s even better if that validation can occur on a field-by-field basis so
problems can be addressed right away.

Validation doesn’t need to be limited to checking for well-formed e-mail addresses or other
values entered by the user. It’s currently becoming popular to use Ajax4 to unobtrusively
query server-side databases, allowing, for instance, near-instantaneous confirmation as to
whether a desired username is available and alternatives if not, or a list of available concert
tickets or airline seats on a given date. Because this book is primarily about (X)HTML, I’m
not going to try and teach you Ajax—there’s enough material there for a whole other
book—but if this is an area you wish to learn more of, you could try starting with the tuto-
rial “Ajax and XMLHttpRequest” (www.xul.fr/en-xml-ajax.html) and the article “Ajax:
Getting Started” (http://developer.mozilla.org/en/docs/AJAX:Getting_Started).

The first bit of form validation you’ll likely want to do is ensure that all required form
fields have been completed, which is usually as simple as checking to see if the value of a
form field is null, as detailed in the article “3 Steps to Writing JavaScript”
(http://chunkysoup.net/basic/js3step/js_3step.3.html). It’s also worth checking that
any e-mail addresses entered are, in fact, actual e-mail addresses. There are a couple of
ways of doing this, one of which is to include an extra field and ask users to enter their
details twice, and then check that the contents of both fields match (this technique is use-
ful for password fields as well). This can help prevent some errors, but it doesn’t stop users
from actually making the same mistake in both fields (particularly if they simply copy and
paste from the first input).

A better way is to use regular expressions (strings that match certain patterns of other
strings according to a given syntax) to check that the value is actually an e-mail address, and

FORM MASTERY

111

4

4. Ajax stands for Asynchronous JavaScript and XML, a technique for making web pages feel more
responsive by exchanging small amounts of data with the server behind the scenes, negating a need
for a full page reload.

7656Ch04.qxp 11/16/06 11:31 AM Page 111

alert the user if it appears to be incorrect. Creating the regular expression can be a compli-
cated business (see www.regular-expressions.info/email.html for more information),
but once you have your expression, the script can usually be quite simple (see www.
codetoad.com/javascript/is_valid_email.asp and www.quirksmode.org/js/mailcheck.
html for examples).

How about validation of other common form values, such as telephone numbers and zip
codes? Doing so would be possible using the same methods just described, but validation
for these items should not be quite as severe—telephone numbers and zip codes can
often vary wildly from state to state and country to country, so it’s best to leave these
things loose. You could also validate credit card details in a rudimentary way by checking
to ensure that the card number is 16 digits, checking to make sure the expiration dates are
valid dates, and so on. What you won’t be able to do at this stage is check whether the
credit card is actually a valid card; that level of validation needs to take place on the
server, in communication with the banks. But at least you can attempt to ensure the details
you receive are of a valid format prior to submission to these systems.

Forms as navigation

Forms are not always just used for collecting data. You’ve probably seen something like
the menu shown in Figure 4-39.

This is commonly referred to as a jump menu, and it consists
of a <select> menu with a range of <option> elements,
each containing a URL as their value. You can’t make these
menus functional with (X)HTML alone. All a form can do—all
it was designed to do—is collect values from the form and
pass them on as name/value pairs to the handler specified in

the form’s action attribute, so it isn’t enough to provide URLs as values and hope that the
browser will know what you mean. You still need to explain yourself with a script and a
server-side handler.

Using <select> as a means of navigation has advantages: it saves a significant amount of
space, it’s unobtrusive, and clients tend to like it. It also has several disadvantages: search
engines will not be able to crawl your site unless you also provide a text-based list of
hyperlinks somewhere on the page, users won’t be able to distinguish between unvisited
and visited links, and there are problems with inaccessibility when it’s not used well. Being
a form, it still ought to provide both client-side and server-side functionality.

The most common JavaScript solution I’ve seen uses an onchange attribute that detects
when an <option> has been selected and then changes the current document location to
match the URL in the value. It’s straightforward but inaccessible to keyboard users, as the
menu registers a change as soon as users scroll down to the first <option>.

For more information on regular expressions, start with http://en.wikipedia.org/
wiki/Regular_expression and take it from there.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

112

Figure 4-39.
A <select> menu used as a
navigation menu

7656Ch04.qxp 11/16/06 11:31 AM Page 112

Also needed are a submit button and a server-side form handler. If desired, you could hide
the submit button from users who can use the JavaScript solution with a quick and dirty
<noscript>:

<noscript><input type="submit" value="Go" /></noscript>

You would then need to provide a handler that took the value from the <select> menu
and changed the browser location, making your jump menu accessible to more people.

Manipulation of disabled controls

As mentioned earlier, form controls all come with a disabled attribute. When set, the
form control cannot be used, its value will not be submitted to the server, and the control
itself will usually be grayed out or otherwise de-emphasized visually. On its own, this
attribute doesn’t have much use—if you’re going to disable form controls on a static
(X)HTML page, then you might as well just leave the control out altogether—but when
combined with script, it can be more useful.

For instance, to help prevent duplicate form submissions (particularly useful during an
online ordering process), many forms now programmatically disable the submit button
after it has been clicked. At its simplest, this result can be achieved with a couple of event
handlers:

<input type="submit" onclick="this.disabled=true;" ➥

onkeypress="this.disabled=true;" value="submit" />

Further uses of dynamic disabling could include disabling and enabling form controls based
on user choices. For instance, if your form contains multiple paths depending on the choices
the user makes, irrelevant fields can be dynamically disabled to guide those users along.

Form event handlers

As mentioned previously, several form-specific event handlers are available. onsubmit and
onreset are both applicable to the <form> element and will fire events when the form is
submitted or reset, respectively. onselect may be used only with the <input> and
<textarea> elements and refers to when the user selects some text within the text field.

Using both onclick and onkeypress event handlers means the script will fire for both
mouse and keyboard users, and so is more accessible.

Cameron Adams came up with a solution that uses a bit more script but functions for
keyboard users as well: www.themaninblue.com/writing/perspective/2004/10/19.
This solution is better, but it still requires the user to have scripts enabled.

FORM MASTERY

113

4

7656Ch04.qxp 11/16/06 11:31 AM Page 113

onchange may be used only with the <input>, <select>, and <textarea> elements and
refers to when a control is no longer in focus and has changed since gaining focus. Finally,
onfocus and onblur refer to when a control has focus or loses focus, respectively, and can
be used on the <input>, <select>, <label>, <textarea>, and <button> elements.5 My
previous advice on the subject of event handlers still stands: where possible, use an exter-
nal JavaScript that manipulates elements by traversing the DOM tree. Let’s see how we can
do that.

The onfocus event handler is pretty useful when it comes to adding a little usability to
your form. Let’s say that you have some placeholder text in all of your text inputs, as
shown in Figure 4-40.

Somebody filling in your form would have to delete each instance of placeholder text
before they could insert their own—not much fun. A quick and dirty way of alleviating
that problem is with onfocus:

<input type="text" value="Your name here" onfocus="select();" />

Now, when the user tabs into that field, the text within it is automatically selected, as
shown in Figure 4-41.

Why does this matter? Well, the user can now start typing, and whatever the user types will
instantly replace the selected text, so there’s no need for the user to manually delete the

Figure 4-41.
Automatically selected text

Figure 4-40.
Several text inputs with
placeholder text

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

114

5. These last two event handlers can also be used on the <a> and <area> elements.

7656Ch04.qxp 11/16/06 11:31 AM Page 114

placeholder.6 All well and good, but you would need to add that onfocus attribute to every
<input> on your page, so this technique may be better for the user but not so much for you.

Instead, let’s use an external JavaScript script:

function focusFields () {
if (!document.getElementsByTagName) return false;
var formfields = document.getElementsByTagName("input");
for (var i=0; i < formfields.length; i++) {
formfields[i].onfocus = function() {
this.select();

}
}

}
window.onload = focusFields;

This script applies the select(); behavior to every <input> on your page. The principle is
basically the same for all of these event handlers: you create an array containing all tags of
a given name, and then loop through those tags applying a function, so you can apply
numerous behaviors without having to modify your source markup.

Summary
This concludes our examination of form markup, usability, styling, and scripting. I hope
you can see that, while it can be very easy to create a form, creating one that is as usable
and accessible to as wide a range of people as possible, yet remains attractive, can be quite
challenging. There will often be moments when you need to choose between usability and
design, and I hope you’ll always choose the former. A form may be bland or ugly, but if
people can use it effectively, that’s really what matters.

FORM MASTERY

115

4

6. I’ve seen some people automatically clear placeholder text instead of selecting it. Please don’t do this;
it’s incredibly frustrating when I find I have to go back to an input field and find it helpfully deleting
my previous entry when it gains focus.

7656Ch04.qxp 11/16/06 11:31 AM Page 115

7656Ch05.qxp 11/16/06 11:29 AM Page 116

5 PURPOSE-BUILT SEMANTICS:
MICROFORMATS AND

OTHER STORIES

7656Ch05.qxp 11/16/06 11:29 AM Page 117

The preceding chapters have covered nearly every tag and attribute there is, with a few
exceptions that you can find in Appendix B. Now that you’re aware of all this markup avail-
able to you, you should be able to find a relevant tag for every element on your page and
every fragment of text, right? Well . . . probably not. Try as you might to build your pages
as free from generic <div> and tags as possible, eventually you’re going to have to
face up to the fact that (X)HTML does not provide everything you need to describe your
content, nor was it ever intended to; this is why generic <div> and elements exist
in the first place.

The purpose of this chapter is to examine how you can create your own semantics using
the languages and tools already available to you (something you already do every time you
give something a class name or id, or a rev or rel value), which is why it’s as important
to use semantic class names—names that describe the purpose or function, rather than
the appearance—as it is to use semantic elements. We’ll look at the use of metadata,
microformats (what they are and why you should care, followed by a look in detail at some
of the more common microformats already in use on the Web today, which will form the
bulk of this chapter), the Dublin Core Metadata Initiative (DCMI), Structured Blogging (SB),
and concepts such as the Semantic Web and Web 2.0.

We’ll start with metadata and the <meta> element.

Metadata
Metadata is essentially data about data. When you buy a song from the iTunes music
store, the song file itself (the AAC file) is the data; the track information that appears on
your audio player—the title, the artist, the album the track is from, the duration of the
track, and so on—is metadata, in this case stored at the beginning of the audio file in a
format known as ID3. When you’re writing an essay in Microsoft Word, you can retrieve
information such as page count, word count (plus or minus footnotes), character count,
paragraph count, line count, and so on; the essay is the data, and the information about
the essay is the metadata.

In HTML, metadata about an HTML document has historically been included via the
<meta> element, placed in the head of the document. This element has been around since
HTML 2.0 and is fairly open-ended; it was designed to allow authors to include various
types of metadata on their pages by specifying a property (via a name attribute, which can
be any value you like) and a value (via a content attribute). For instance:

<meta name="Author" content="Paul Haine" />

The property here is Author and the value is Paul Haine.

You can also include a lang attribute, which defines the language of the value of the content
attribute, allowing any screen-reading device with the ability to read <meta> content to alter
its pronunciation appropriately:

<meta name="Author" lang="fr" content="Jacques Cousteau" />

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

118

7656Ch05.qxp 11/16/06 11:29 AM Page 118

It isn’t always clear what the property value means, but there exists a scheme attribute
that can be used to provide further information. Take this example from the HTML 4.01
specification:

<meta scheme="ISBN" name="identifier" content="0-8230-2355-9" />

This can help a user agent understand that the identifier is an ISBN and not a random
string of numbers. However, this is only of use if the user agent understands what an ISBN
is, so values are defined in an external profile, which is referred to as an attribute value in
the <head> tag:

<head profile="http://example.com/profile/core">

The HTML specification does not have anything to say about what ought and ought not to
be in a profile, so authors are free to create their own properties and associated values.
Profiles can exist as an HTML document; microformats, which we’ll examine later, use stan-
dard XHTML: a definition list with a class name of profile (http://gmpg.org/xmdp/
samplehtmlprofile.html). The Dublin Core Metadata Initiative, something else we’ll
touch upon later, is an organization that promotes the adoption of interoperable meta-
data standards for bibliographic descriptions (http://dublincore.org/2003/03/24/dces)
and uses RDF for their profiles rather than XHTML—but the underlying principle is the
same: a dictionary of terms, each term having its own description.

Finally, there exists an http-equiv attribute to be used in place of name; HTTP servers can
then use this attribute to gather information for HTTP response message headers. You’ll
most likely have seen this already in the head of your web pages if you use Dreamweaver:

<meta http-equiv="Content-Type" ➥

content="text/html; charset=iso-8859-1" />

This informs the user agent that the document should be treated as text/HTML and uses a
character set of ISO-8859-1. There are many other potential values,1 but one common
value you may have seen deserves a special mention as it should not be considered good
practice:

<meta http-equiv="refresh" content="5;url=http://newwebsite.com/" />

RDF stands for Resource Description Framework, a metadata model based upon
making statements about resources in the form of a triple, a subject-predicate-object
expression. From Wikipedia’s entry on the subject: “One way to represent the fact ‘The
sky has the color blue’ in RDF would be as a triple whose subject is ‘the sky,’ whose pred-
icate is ‘has the color,’ and whose object is ‘blue.’ Predicates are traits or aspects about
a resource and express a relationship between the subject and the object.”

PURPOSE-BUILT SEMANTICS: MICROFORMATS AND OTHER STORIES

119

5

1. Too many to list here. See http://htmlmastery.com/s/response-headers/ for an exhaustive list of
HTTP response headers. Bear in mind that not all will be appropriate to use in the context of a <meta>
element.

7656Ch05.qxp 11/16/06 11:29 AM Page 119

This is a way of informing the user agent that it should attempt to load http://newwebsite.
com/ after a delay of five seconds (leaving out the URL means the page will just reload
itself every five seconds instead). In the grand scheme of redirecting users to content that
has moved, this is a quick, dirty, and ultimately unsatisfying method and is widely discour-
aged: it does not provide any feedback to the browser or search engine that the resource
is in a different location, it breaks the user’s back button, it is inaccessible because it allows
the user no control over the rate of refresh, and it is not a guaranteed method anyway,
since users may have disabled auto-refreshing.

A better, recommended way of redirecting is to use HTTP redirects, where redirecting is
carried out on the server-side rather than the client-side. The server can then inform the
user agent that the resource has been permanently redirected or temporarily redirected
by sending an HTTP status code of 301 or 307, respectively.

Setting up HTTP redirects is only moderately more time-consuming but much more benefi-
cial—how to set them up will vary depending on what server setup you have, but there are
some useful links to instructions available at the W3C Quality Assurance website
(www.w3.org/QA/Tips/reback) for the most common platforms (Apache and Microsoft IIS).

So, that’s the <meta> element—just one standard way of including metadata in your web
pages. There are other ways that you’re almost certainly already using: the <title> on
every page is metadata; the <address> element, used to provide contact information for
the document, is also metadata; any time you use a title attribute, a cite attribute, or a
datetime attribute, you’re again creating metadata.

Unfortunately, metadata on the Web has a bit of a shady past. When name attribute value
is either keywords or description, then the content attribute value can provide, respec-
tively, a comma- or space-separated list of appropriate keywords relating to the document
content and a concise summary of the document content. For instance, if you had written
an essay on the history of Nintendo, you could use <meta> elements like this:

<meta name="keywords" content="nintendo, nes, snes, famicom, n64, ➥

gamecube, game boy, ds, zelda" />
<meta name="description" content="A brief history ➥

of Nintendo consoles from the inception of the Nintendo ➥

company to the present day." />

This would provide search engines with information about the essay before they’d even
looked at the essay, in theory helping to create search results with greater accuracy. A suf-
ficiently sophisticated engine could even learn that the Gamecube and Game Boy were
created by Nintendo even if the word “Nintendo” never appeared in the article.

In practice, however, people realized that by stuffing their <meta> elements with inappro-
priate and misleading keywords and descriptions, they could trick search engines in an
attempt to have their site rise in the rankings, even for unrelated searches. Eventually,
search engines stopped referring to <meta> keywords altogether, as they could not be
relied upon. Some engines may still display the description value on their results page, but
generally only if the description contains the desired search term.

Spamming search engines with deliberately incorrect metadata is one of seven problems
highlighted in an article by Cory Doctorow, “Metacrap: Putting the torch to seven straw-men

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

120

7656Ch05.qxp 11/16/06 11:29 AM Page 120

of the meta-utopia” (www.well.com/~doctorow/metacrap.htm)—namely, that people lie. His
analysis of the problems facing metadata can make for depressing reading; not only do peo-
ple lie, but people can also be lazy and stupid, which introduces further inaccuracies or gaps.
The gathering of metadata requires people to be both the observer and documenter of their
own behavior, allowing personal bias and regional variations in terminology to creep in. And
there is also the problem of differing opinions on what constitutes accurate metadata; the
notion that there is a “correct” way of categorizing and describing all data is fallacious.

So it’s all beginning to look a bit bleak, but Doctorow doesn’t suggest abandoning meta-
data altogether: “Metadata can be quite useful, if taken with a sufficiently large pinch of
salt. The meta-utopia will never come into being, but metadata is often a good means of
making rough assumptions about the information that floats through the Internet.”
Google, for instance, does exactly that—it uses the information about how many people
are linking to you to determine the importance of your site in relation to the rest of the
World Wide Web; the number of people linking to you is metadata about your site. So
despite the fact that, yes, people can lie, be lazy, be stupid, and argue, great things can still
come from exploiting metadata.

We will now turn to the current golden boy of online metadata—microformats.

Microformats
Microformats are either wildly exciting or deeply bewildering, depending on how much
you’ve read about them. I have to confess, when people first started talking about micro-
formats a year or so ago, I didn’t entirely understand what the big deal was; looking at the
hCard microformat, it struck me as being an awful lot of extra markup—lots of and
<div> tags—for not much extra gain. But, like so many others, I finally began to under-
stand how much potential they have and how useful they really are. Hopefully, if you’re
still looking at them with a skeptical glare, you’ll have changed your mind by the end of
this section.

So, first of all, what is a microformat? It’s a good question, so let’s start with the definition
provided on microformats.org, which describes microformats as “a set of simple, open
data formats built upon existing and widely adopted standards.” The microformats-discuss
mailing list (microformats.org/discuss/) provided this alternative definition:
“Microformats are simple conventions for embedding semantics in HTML to enable decen-
tralized development.”

So what did that mean? Essentially this: marking up certain chunks of content in a stan-
dardized way that allows external applications, aggregators, and search engines to

Recognize the content for what it is when crawling your website.

Manipulate that content by providing access to it, collating it, or converting it into
other, related formats for use in external applications and web services.

Let’s look at some examples before we get too bogged down in high-level descriptions. For
instance, you’ve already heard me make mention of the hCard microformat. I’ll discuss it in
more depth further on, but for the moment, just understand that it is a way of marking up

PURPOSE-BUILT SEMANTICS: MICROFORMATS AND OTHER STORIES

121

5

7656Ch05.qxp 11/16/06 11:29 AM Page 121

your existing online contact details with standardized class names that allows for easy con-
version to the vCard format (a portable electronic business card) or for search engines
specifically searching for contact details to pick them out.

Another example is the XFN microformat. Standing for XHTML Friends Network, XFN is a
way of using the rel attribute on hyperlinks to describe a relationship between yourself
and the person you’re linking to, allowing for the creation of automatically generated
social networks based on that information.

So that’s what a microformat is, basically—a means of taking advantage of existing stan-
dards to solve perceived problems. In the case of hCard, the problem was that there was
no standard way to format and retrieve contact details from a web page, and in the case
of XFN, the problem was that there was no standard way to express, semantically, personal
relationships between a linker and one being linked to. They can look a little ungainly at
first—in fact, the most common complaint I’ve heard about them is that due to their
sometimes high use of generic elements, they appear to be the antithesis of the lean,
meaningful markup we’re all striving for these days. I can understand this complaint, as it’s
precisely the same thought I had when I first encountered hCards.

However, this doesn’t necessarily need to be the case. Part of the guiding principles of
microformat creation is that you should use the most appropriate semantic (X)HTML ele-
ment where possible. If no such element exists, you use the most appropriate structural
element instead, which could be a <div> or a but could also be an <address>, a
, or even a <td>, depending upon the circumstances. While it is true that some micro-
format implementations will favor , I don’t think this is as bad as it initially feels.
While it’s good to avoid overusing generic elements, in this instance the tag is being used
with meaning; it has been given semantic meaning, meaning that exists implicitly by con-
text. Furthermore, using microformats can negate the need for extra presentational
markup such as
, so when it comes down to it, your page is only gaining a few bytes
around the hips.

Should you get excited about microformats? I definitely think they have great potential,
and the more people who use them, the better things will be: the available range of data
will be richer and larger, and the tools to make use of it all will be better integrated and
more widely available. Some quite large sites other than Technorati (Upcoming.org, for
instance, and various Yahoo! sites) are already making extensive use of them. We may even
soon be seeing involvement from Microsoft, after Bill Gates was quoted in March 2006 as
saying, “We need microformats and to get people to agree on them. It is going to boot-
strap exchanging data on the Web . . . we need them for things like contact cards, events,
directions . . .” (www.youtube.com/watch?v=Z9X-vHJ_Z-I). Could it be we’ll see microfor-
mat data integrated seamlessly into Windows and Internet Explorer one day?2

Let’s now look at some microformats with already-completed specifications: hCard,
hCalendar, XOXO, XFN, VoteLinks, and three “rel-” microformats—rel-license, rel-nofollow,
and rel-tag. I’m also going to show you hReview, despite it still being in draft form at this
time, because it is already in use in some high-profile locations (Yahoo! Tech are using it, for
instance) and so is unlikely to massively change between now and its formalization. Some of

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

122

2. And when that day comes, will they be referred to as Microsoft Microformats Executive Business
Edition? Time will tell.

7656Ch05.qxp 11/16/06 11:29 AM Page 122

the formats still in draft form at this time will undoubtedly have been formalized by the
time this book has been published, so do check microformats.org first of all for any new
microformat news.

First of all, hCard.

hCard

The hCard microformat is a format designed to represent people and their companies,
organizations, and locations using more or less the same properties and values of the
vCard standard (www.imc.org/pdi/vcard-21.txt), but in (X)HTML. You may have used
vCards in the past yourself; a vCard is an electronic business card, usually with a file exten-
sion of .vcf, that can contain—in the form of strings of plain text—not only name and
address details, but also phone numbers, URLs, logos, and photographs (encoded in
base64 or referenced by URI), and so on. They’re not limited to specific operating systems
or applications—most e-mail clients will support vCards—and they’re completely portable.
You can e-mail them, offer them for download on a website, or transfer them via
Bluetooth, and generally you just need to open one on your computer, phone, or other
device, and your preferred e-mail or address book application will allow you to save the
contents of the vCard into your system address book. All well and good.

An hCard is a way of marking up your contact details in (X)HTML using class names that
match as best as possible those names used in the vCard standard, allowing you to easily
convert hCards to vCards. For instance, here is a sample vCard:

BEGIN:VCARD
VERSION:3.0
N:Haine, Paul
FN:Paul Haine
URL:http://unfortunatelypaul.com/
ORG:International Man of Mystery
END:VCARD

An equivalent of this as an hCard would be

<div class="vcard">
Paul Haine
<div class="org">International Man of Mystery</div>

</div>

Broken down into pieces, we have the following:

A block-level container tag with a class of vcard to indicate to parsers that its con-
tents should be treated appropriately

An anchor tag with a class of url and fn—the URL is provided in the href attribute,
and the fn, or the full name, in the content of the tag

An additional container tag with a class of org, which stands for organization (This
doesn’t need to be a <div>—a <p> or a would do the job just as well. The
class name is the important part.)

PURPOSE-BUILT SEMANTICS: MICROFORMATS AND OTHER STORIES

123

5

7656Ch05.qxp 11/16/06 11:29 AM Page 123

In the end, as we’re not using any visually distinctive tags, our hCard would render in a
browser, very simply, as shown in Figure 5-1.

Figure 5-1. A basic hCard

Because any parser looking for hCard-specific markup will ignore anything it doesn’t
understand, we’re not limited to displaying hCards in a traditionally formatted block of the
sort you might find on the front of an envelope or in a corner of a formal letter. We can
happily incorporate the hCard markup into natural language, like this:

<p class="vcard"><a class="url fn" ➥

href="http://unfortunatelypaul.com/">Paul Haine is currently
working for <cite class="org">International Man of Mystery</cite>,
an organization dedicated to, ooh, all sorts of secret
and exciting things.</p>

This is exactly the same hCard as before, but now it renders as shown in Figure 5-2.

Figure 5-2. An hCard incorporated into a natural sentence

Alternatively, we could have a table of people, each with their own hCard, by integrating
the hCard class names directly into the table markup:

<table>
<tr>
<th scope="col">Name and URL</th>
<th scope="col">Organization</th>

</tr>
<tr class="vcard">
<td>➥

Paul Haine</td>
<td class="org">International man of mystery</td>

</tr>
<tr class="vcard">
<td>➥

Vikki Roberts</td>
<td class="org">Jukebox</td>

</tr>
</table>

which renders as shown in Figure 5-3.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

124

7656Ch05.qxp 11/16/06 11:29 AM Page 124

Figure 5-3. A table of hCards

So you can see that even though examples of hCards can tend toward high use of <div>
and tags, you’re not at all limited as to how you integrate the hCard classes into
your own markup.

So far we’ve been using a very simple example, one with only a full name, a URL, and an
organization. As you might expect, there’s a wide range of other properties available:

fn, n (family-name, given-name, additional-name, honorific-prefix,
honorific-suffix), nickname, sort-string

url, email (type, value), tel (type, value)

adr (post-office-box, extended-address, street-address, locality, region,
postal-code, country-name, type, value), label

geo (latitude, longitude), tz

photo, logo, sound, bday

title, role, org (organization-name, organization-unit)

category, note

class, key, mailer, uid, rev

Some of these properties have subproperties, which are the ones in parentheses in the
preceding list. These are used by nesting them within other properties. Let’s take this
address as an example:

Verity Fane-Bailey
23 Acacia Avenue
London, United Kingdom

There are three distinct aspects to this address: a street name, a state, and a country; the
hCard properties that match up to these are, respectively, street-address, region, and
country-name, which are all subproperties of the adr property. To express this in our
markup, we simply nest our properties:

<div class="vcard">
<div class="fn">Verity Fane-Bailey</div>
<div class="adr">
<div class="street-address"> 23 Acacia Avenue</div>
London, ➥

United Kingdom
</div>

</div>

PURPOSE-BUILT SEMANTICS: MICROFORMATS AND OTHER STORIES

125

5

7656Ch05.qxp 11/16/06 11:29 AM Page 125

The adr property seen here is also implemented as a standalone microformat, known simply as
adr. Along with the geo property, these are simply ways of providing geographical information
without creating a full hCard. They currently exist only as draft specifications but are unlikely to
change in any great way, as they are derived from the formalized hCard specification.

There also exists the notion of types, which allows you to be even more specific about an
address element—for instance, providing a home, work, and fax number, which are all
types of the tel property. You indicate types by nesting a type and a value within a prop-
erty. Let’s say you wanted to express this information as an hCard:

Christine Lockwood can be contacted via telephone
(cell: +44 1234 5656, work: +44 1234 7878)
or by fax (fax: +44 1234 7979).

This can be marked up as follows:

<p class="vcard">Christine Lockwood➥

can be contacted via telephone (➥

cell: ➥

+44 1234 5656, ➥

work: ➥

+44 1234 7878) or by fax (➥

fax: ➥

+44 1234 7979).</p>

Now that’s starting to look a bit clumsy, but it’s actually fairly simple: a paragraph with a
class of vcard, followed by a element providing the full name, followed by three
sets of elements with a property of tel, each one containing a type and a value.

You could make the markup more readable with line breaks and tab or space indents, but
extra whitespace in your markup can often translate into extra whitespace in the rendered
document, so be wary—you may wish to break things up during development but collapse
it all again when complete to remove extra visual spacing:

<p class="vcard">
Christine Lockwood can ➥

be contacted via telephone (

cell:
+44 1234 5656

,

work:
+44 1234 7878

) or by fax (

fax:
+44 1234 7979

).
</p>

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

126

7656Ch05.qxp 11/16/06 11:29 AM Page 126

It is also possible to use a type of pref to indicate that a particular type should be the pre-
ferred means of contact. Using the preceding example, if the cell phone was preferred
over the work phone, this could be indicated in the content like this:

Christine Lockwood can be contacted via telephone
(cell (preferred): +44 1234 5656, work: +44 1234 7878)
or by fax (fax: +44 1234 7979).

In the markup, we just need to include (preferred) between
the cell type and the cell value—we use pref rather than the full word because pref is the
keyword inherited from the vCard standard—so the markup now looks like this:

<p class="vcard">Christine Lockwood➥

can be contacted via telephone (➥

cell (➥

preferred): +44 1234 5656➥

, work: ➥

+44 1234 7878) ➥

or by fax (fax:➥

+44 1234 7979).</p>

If you’re concerned that all these extra classes and tags are overwhelming and clut-
tered, take solace in the fact that they are at least meaningful and useful as well.

It’s also possible to include rich media, such as a photo, a logo, or a sound, in an hCard.
Continuing from the preceding example, let’s add an image, so the rendered whole now
looks like Figure 5-4 in a browser.

Figure 5-4. An hCard with the addition of a decorative photo

There are two ways we can include that image in our resulting vCard: by referencing the
URI of the image or by encoding it in base64. Let’s try the first method, which is simply a
matter of including an within the hCard and giving it a class of photo:

<p class="vcard"><img src="http://htmlmastery.com/logo.gif"➥

alt="" class="photo" />Christine...

Now, when the hCard is converted into a VCF file, it will gain a line like this:

To be honest, judging from the quality of some of the markup out there, if a few
too many spans in your hCard is what makes your markup look unprofessional,
then I congratulate you.

PURPOSE-BUILT SEMANTICS: MICROFORMATS AND OTHER STORIES

127

5

7656Ch05.qxp 11/16/06 11:29 AM Page 127

PHOTO;VALUE=uri:http://htmlmastery.com/logo.gif

All well and good, but there’s a problem with this method: it requires a connection to the
Internet to retrieve the image; if there’s no Internet connection available, or the remote
server is down, or the owner of the website has absent-mindedly moved or renamed the
image, then this isn’t going to work. So, we turn instead to the slightly more technical solution
of encoding the image in base64. This is a way of converting binary data (such as an image
file) into plain text, allowing that data to be easily transferred over, for instance, e-mail. Once
we’ve converted the image, we’ll end up with something like this in our markup:

<p class="vcard"><img src="data:image/gif;base64, ➥

iVBORw0KGgoAAAANSUhEUg...

The src attribute no longer refers to an image on the server, but instead now states a
MIME type of image/gif, the type of encoding (base64), followed by a lengthy string of
ASCII characters. I’m not going to include the entire string here—it runs to nearly 5,000
characters, which you must ensure are written out by hand.

Kidding! There are plenty of conversion tools available online (www.motobit.com/util/
base64-decoder-encoder.asp is one I’ve used in the past), or you can program one your-
self in your coding language of choice. But before you get too excited, be aware that we’ve
run into another problem—Internet Explorer can’t display images when they’re encoded
in base64. It’s possible to get around this using a PHP solution by Dean Edwards
(http://dean.edwards.name/weblog/2005/06/base64-ie/) that sends the ASCII data
back to the server, converts it back into an image, and then returns that image. An alter-
native solution is to include both forms of image in your markup, but only give the base64
data the class of photo, and use CSS to hide the inline image from all non-IE browsers.

A further solution, and the simplest of all, is to simply not worry about it and just don’t dis-
play the image to Internet Explorer—the importance of the image being visible to all users
depends on your circumstances.

So that, more or less, is what an hCard is and how you create one—there even exists an
online hCard creator (http://microformats.org/code/hcard/creator) that can take
some of the pain out of your hand-coding. When it comes to exploiting them, there’s
already an abundance of converters, aggregators, and search engines tailored to dealing
with microformat data. Many of these deal with different varieties of microformat rather
than specifically with hCards, and I’ll list some of those toward the end of this section.

Technorati provides an hCard-to-vCard conversion tool (http://technorati.com/
contacts/) that allows you to pass a URL to their server, and it will crawl the page found
at that URL and return a VCF file containing one vCard for each hCard it finds. You don’t
need to even visit the Technorati site for this to work. By including a link like this on your
own page:

➥

Download vCard

you can return a VCF file to your end user without that user ever appearing to leave your
site. A JavaScript favelet is also available to allow you to retrieve vCards from any website
you visit that has implemented the hCard standard.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

128

7656Ch05.qxp 11/16/06 11:29 AM Page 128

If you don’t want to rely upon third-party services (which can become unavailable without
warning), there’s nothing to stop you from writing your own conversion tool in whichever
server-side language you like, with reference to “hCard Parsing” by Tantek Çelik
(http://microformats.org/wiki/hcard-parsing), or by downloading the code available
from http://hg.microformats.org/.

Also of note is the way Andy Hume has implemented hCards for each person who com-
ments on his blog posts (http://thedredge.org/2005/06/using-hcards-in-your-blog/),
which also includes XFN data (see the section “XFN” later in this chapter) and a unique
image for each commenter by using gravatars, or globally recognized avatars.3 At the time
of writing, those images are only displayed on the website version of the hCard; by simply
adding class="photo", they could also be included within the hCard proper.

For even more information on hCards, do read the official hCard Wiki article
(http://microformats.org/wiki/hcard), which lists many more implementations and
contains even more in-depth instructions.

Now, let’s turn our attention to the hCalendar microformat.

hCalendar

The hCalendar microformat is a lot like the hCard format, except it’s used to describe
events rather than contact details and is based on the iCalendar standard (http://tools.
ietf.org/html/rfc2445) used by Apple’s iCal, Google Calendar, Lotus Notes, and many
more. The problem it set out to solve is that, despite bloggers discussing events both past,
present, and future, there existed no standard way to retrieve event information from
those discussions and add it to a personal calendaring application or service. By imple-
menting the hCalendar standard on their websites, people can allow spiders, search
engines, and other aggregators to retrieve that information and convert it into the
iCalendar format (for downloadable iCalendar files, the file extension is usually .ics).

Now that you’re familiar with hCard, working with hCalendar shouldn’t pose much of a
problem, as the principles are basically the same. Indeed, some of the iCalendar properties
such as attendee, contact, and organizer are not even implemented in hCalendar, as you
can use a nested hCard instead. The location can also be included within the hCard (but
also exists in hCalendar), or you can use the adr or geo formats as mentioned in the
“hCards” section earlier.

A favelet, also known as a bookmarklet, is a small snippet of JavaScript that provides
one-click functionality for any number of services. It is stored as a URL within your
browser bookmarks or within a link on a page.

PURPOSE-BUILT SEMANTICS: MICROFORMATS AND OTHER STORIES

129

5

3. These represent a means of having the same image appear next to your name on any blog that’s imple-
mented the system. See www.gravatar.com for more info.

7656Ch05.qxp 11/16/06 11:29 AM Page 129

A typical event discussed online consists of the following elements: a summary or title, a
location, a URL, a start date and time, an end date or time, and a description. For instance,
this event:

Future Noir: A retrospective look at Blade Runner
and its effects on the cyberpunk movement
The 1992 release of the "Director's Cut" only confirmed what
the international film cognoscenti have known all along:
Ridley Scott's Blade Runner, based on Philip K. Dick's brilliant
and troubling SF novel Do Androids Dream of Electric Sheep,
still rules as the most visually dense, thematically challenging,
and influential SF film ever made.
Date: August 11th, 2006. Registration begins at 09:30,
discussion ends at 4:30 same day.
Venue: Orwell House Independent Theater

Expressed in plain vanilla (X)HTML, this can be straightforward enough:

<h1>
Future Noir: A retrospective look at <cite>Blade Runner</cite>
and its effects on the cyberpunk movement</h1>
<p>The 1992 release of the "Director's Cut" only confirmed
what the international film cognoscenti have known all along:
Ridley Scott's <cite>Blade Runner</cite>, based on
Philip K. Dick's brilliant and troubling SF novel
<cite>Do Androids Dream of Electric Sheep</cite>,
still rules as the most visually dense, thematically challenging,
and influential SF film ever made.</p>
<p>Date: August 11th, 2006. Registration begins at 09:30,
discussion ends at 4:30 same day.</p>
<p>Venue: Orwell House Independent Theater</p>

To turn this into an hCalendar, we first of all need to enclose it in a vevent container:

<div class="vevent">
...

</div>

Why vevent and not vcalendar? The vcalendar class is optional as its presence is implied
by the presence of the vevent. If you’re just displaying one event, it’s superfluous; but if
you’re displaying multiple calendars on the same page, it should be used to group the
vevents accordingly, like this:

<h2>A set of events</h2>
<div class="vcalendar">
<div class="vevent">
...

</div>
</div>

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

130

7656Ch05.qxp 11/16/06 11:29 AM Page 130

<h2>A set of events for a subject unrelated to the previous one</h2>
<div class="vcalendar">
<div class="vevent">
...

</div>
</div>

So, now we’ve informed the hCalendar-aware that here exists an event that’s marked up in
a way that can be exploited. We need to now fill in the details; let’s begin with the title of
the event, Future Noir: A retrospective look at Blade Runner and its effects on the cyberpunk
movement. In our markup, the title is also acting as a link to another page (presumably a
page giving more details about the event), so that makes it both a url and a summary, so
our <a> now becomes the following:

<a href="http://orwellhouse.com/futurenoir/" ➥

class="url summary">Future Noir: A retrospective look at ➥

<cite>Blade Runner</cite> and its effects on the ➥

cyberpunk movement

The title of the event is then followed by a description, which we indicate very simply by
adding a class name of description to the containing <p>:

<p class="description">The 1992 release of the "Director's Cut"
only confirmed what the international film cognoscenti have
known all along: Ridley Scott's <cite>Blade Runner</cite>,
based on Philip K. Dick's brilliant and troubling SF novel
<cite>Do Androids Dream of Electric Sheep</cite>,
still rules as the most visually dense, thematically challenging,
and influential SF film ever made.</p>

This is followed by the date of the event and the start and end times. This isn’t as straight-
forward as just adding a class name. Dates in the iCalendar format need to be in the
ISO-8601 format: so for our event, the date would be 20060811, which is the year, then the
month, then the day—perfectly understandable for machines, but not very readable to us
humans. A solution is to use an <abbr> element to present the date in a human-readable
format, and then include the ISO-8601 version in the <abbr> title attribute.

Because we don’t just want to display the date but also the start time and end time, we’ll
mark up the two times present in our event. The two class names we need for that are
dtstart and dtend, so our markup will look now like this:

<p>Date: August 11th, 2006. Registration begins at
<abbr class="dtstart" title="20060811T0930">09:30</abbr>,
discussion ends at <abbr class="dtend"
title="20060812T1630">4:30</abbr> same day.</p>

So, any parser will now be able to retrieve both the start and end dates and times (the
time is indicated by the T character), but people will be able to easily read the information
as well. This is one of the principles of microformats: people first, machines second—first
of all, you make sure the information can be used by ordinary people, and then you add
the metadata for the machines.

PURPOSE-BUILT SEMANTICS: MICROFORMATS AND OTHER STORIES

131

5

7656Ch05.qxp 11/16/06 11:29 AM Page 131

Finally, we indicate that the event will take place in the Orwell House Independent Theater
by adding a class name of location to our markup:

<p>Venue: Orwell House ➥

Independent Theater</p>

And that’s it—that’s our event now marked up in the hCalendar format. By running that
through the Technorati hCalendar-to-iCalendar converter (http://feeds.technorati.com/
events/), we end up with an ICS file looking somewhat like this:

BEGIN:VCALENDAR
PRODID:-//suda.co.uk//X2V 0.7.2 (BETA)//EN
VERSION:2.0
METHOD:PUBLISH
BEGIN:VEVENT
LOCATION;CHARSET=UTF-8:Orwell House Independent Theater
SUMMARY;CHARSET=UTF-8:Future Noir: A retrospective ➥

look at Blade Runner and its effects on the cyberpunk movement
DTSTART:20060811T000930
DTEND:20060812T001630
URL:http://orwellhouse.com/futurenoir/
END:VEVENT
END:VCALENDAR

Like vCards, iCalendars (somewhat confusingly referred to as vCalendars within the file
itself) are just plain text files, so copying the preceding into a text file and saving it with an
.ics extension should allow you to import the event into your calendar application of
choice.

There’s more you can do, of course. If your event is private, you can indicate this with a
class name of class. What? Yes, a class name of class—like this:

<p>This meeting is private</p>

Events can also be public (assumed unless otherwise stated) or confidential, marked up
in the same way with the desired value appearing as the content of a tag.

If your timetable includes different categories—our example event could belong to cate-
gories of film and cyberpunk—then this can also be expressed by using a class name of
category, and, just like earlier, the category name is taken from the content:

<li class="category">Film
<li class="category">Cyberpunk

In our hCalendar file, this appears as follows:

CATEGORIES:Film,Cyberpunk

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

132

7656Ch05.qxp 11/16/06 11:29 AM Page 132

It’s even possible, given hCalendar-aware technology, to subscribe to an hCalendar-
enhanced feed from a website. Imagine you’ve just signed up for a conference that has not
yet finalized its schedule, but when it does publish updates, it does so not just on the web,
but also in an RSS feed as well, and it structures those updates with hCalendar markup.
Some software such as the Endo newsreader software (http://kula.jp/software/endo/)
can subscribe to that feed and pick out each vevent, adding it automatically to your cal-
endar. Have a look at Drew McLellan’s screencast to find out how that’s done (http://
allinthehead.com/retro/288/hcalendar-in-endo).

Finally, it’s also worth knowing that you’re not limited to describing events: you may also
include to-do notes and journal entries, you may wish to set reminders and alarms, and
with shared calendars you may wish to mark time out as being free or busy. The good news
is that pretty much anything you can do in iCalendar you can reproduce in hCalendar, and
you can find many more examples at the official hCalendar Wiki (http://microformats.
org/wiki/hcalendar-examples).

“rel-” microformats

Remember the rel attribute from earlier? That attribute is often used in microformats,
and the usage is generally very simple. The rel-license format, for instance, looks like this:

<a rel="license" href="http://creativecommons.org➥

/licenses/by-nc-sa/2.5/">➥

Creative Commons License

By including a rel attribute with a value of license in the anchor tag, you can indicate
that the destination of the hyperlink is a license for the content contained on the current
page. The example I’m using is from my own design blog Unfortunately Paul, where the
content has been made available under a “Creative Commons Attribution-NonCommercial-
ShareAlike 2.5 License,” which means that people are free to copy, distribute, and display
my published entries and to make derivative works so long as I’m credited, it’s for non-
profit purposes, and any derivations are released under the same license. Creative
Commons is an organization that provides a variety of “some rights reserved” copyright
licenses, allowing content authors to release their content into the wild but retain some
level of copyright.

The rel-license microformat is already in wide use, particularly thanks to the Creative
Commons license generator (http://creativecommons.org/license/) that includes it in
every generated license. Both Yahoo! (http://search.yahoo.com/cc) and Google
(www.google.com/support/bin/answer.py?answer=29508) provide the means to search
for content—which can be textual, audio, video, and so on—that has been released under
such licenses, and they do that by searching for the presence of a rel-license microformat.

The rel-nofollow format is even more straightforward:

➥

This dingo ate my baby

PURPOSE-BUILT SEMANTICS: MICROFORMATS AND OTHER STORIES

133

5

7656Ch05.qxp 11/16/06 11:29 AM Page 133

The value of nofollow in the rel attribute indicates to user agents that perform link analy-
sis upon web pages (such as Google) that the destination web page should not be ranked
or spidered or crawled in any way; it is a way of providing a clickable link to a person or
organization without providing any implicit endorsement of it.

This microformat was actually originally created by Google as a means of preventing com-
ment spam (http://googleblog.blogspot.com/2005/01/preventing-comment-spam.html),
where spammers would repeatedly post spam (“visit my cialis soft-tabs holiday rentals in
Spain v|agra site” and that sort of thing) in the comment sections of blogs, originally a
severe problem for users of the Movable Type blogging software but later also affecting
WordPress and Textpattern users as the popularity of those systems grew. The theory was
that if blog software included nofollow values in every comment link, spammers would
cease to use comment spam as a viable means of gaining page rank. Most popular blog
systems now add nofollow values on commenter links by default.

Did it work? Not noticeably—just as e-mail spammers don’t appear to selectively pick out
the nonresponsive e-mail addresses from the masses they send to, comment spammers
aren’t leaving those with nofollow implementations out either. But it’s not all bad—it no
doubt has had a positive impact on the proliferation of spam in search results as Google,
Yahoo!, and MSN are no longer crawling as many spam links. The only remaining issue is
that if people are indiscriminately adding a nofollow value to all comment links, search
engines are also no longer crawling legitimate comment links either, so it’s a bit of a
heavy-handed solution that actually breaks Google’s own use of link metadata to gauge
popularity. Fortunately, some blogging systems now only add nofollow values to com-
ments by authors who have not yet posted a comment—assuming that anyone who has
posted previously is therefore safe.

Finally, the rel-tag microformat. We’ve already touched upon the rel-tag microformat ear-
lier, but let me go over it again. By adding rel="tag" to a hyperlink, you are indicating that
the resource referred to in the href can be considered as a category for a particular sub-
ject—the content of the <a> becomes the tag. For instance, let’s imagine that you had
written an article about Nintendo, published on http://joeblade.com. Somewhere within
the body of that article, you would include a link that looked like this:

Nintendo

Spelled out, that means “the resource available at http://joeblade.com/category/
nintendo/ is a category (or subject, or tag) page for the subject detailed on this page.”
Anybody clicking that link would end up at a category page that collated all articles on
http://joeblade.com that related to the subject of Nintendo, and then they could hap-
pily while away the hours reading up on what is clearly the greatest videogame company
in the world.

But why bother including rel="tag" at all? Well, by including that link within the body of
your article (or before the article, or beneath it—just somewhere where both browsers
and aggregators can see it), you indicate to the entire world that your article is of the tag
nintendo, allowing content searchers and aggregators such as Technorati to create their
own category pages, ones that now include links to your article (e.g., http://technorati.
com/tag/nintendo).

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

134

7656Ch05.qxp 11/16/06 11:29 AM Page 134

The notion of tagging content in this way is big business, not just because of Technorati—
which uses them heavily—but also because of Flickr, the hugely popular online photo
sharing application, which allows its users to descriptively tag their photos and browse
collections of those tags, and YouTube, which allows its users to do the same with
uploaded video clips.

The tagging of content has also led to a proliferation of tag-based navigation, sometimes
seen as tag clouds, as Figure 5-5 illustrates.

Figure 5-5. A weighted tag cloud—popular tags appear larger than the less-popular ones.

The idea behind tag-based navigation is that it is more natural and organic than the tradi-
tional rigid lists of categories—it is instead more freeform, adapting as you add to it over
time. The rel-tag format is in wide use, with most current blog software offering tagging
capability either natively or through plug-ins.

VoteLinks

The VoteLinks microformat provides another solution to the same problem that rel-nofollow
aims to solve: namely that linking to a source implies endorsement when sometimes you’d
rather be condemning. VoteLinks this time makes use of the rev attribute with three allowed
values, vote-for, vote-abstain, and vote-against, allowing you to indicate endorsement,
neutrality, and condemnation. The rev attribute is used here instead of rel because of the
direction of the relationship. Have a look at this example, using rel:

Example

Remember how rel works? It describes how the resource indicated by the href location
relates to the current document; this means that the preceding example, in plain English,
says, “The person or organization located at http://example.com endorses this docu-
ment,” which isn’t the meaning that is trying to be conveyed. The rev attribute, on the
other hand, implies the opposite:

Example

This example says, “The originator of this document endorses the person or organization
located at http://example.com,” which makes much more sense. You can also use this in
combination with rel-nofollow, to allow for user agents that react to either one or the
other but not both:

PURPOSE-BUILT SEMANTICS: MICROFORMATS AND OTHER STORIES

135

5

7656Ch05.qxp 11/16/06 11:29 AM Page 135

➥

Example

At the time of writing, there are no major implementations of this format, though some
Firefox extensions may soon provide visual access to the information. Criticism of
VoteLinks has centered around the perceived “black-and-white” nature of the voting. For
example, if I link to an article by someone who has disagreed with me, but I want people
to read it, should I vote for, vote against, or abstain? Personally, I don’t think it’s that big of
a problem—in this instance, I would abstain—as VoteLInks is still quite theoretical, and
possibly only of use on occasion when someone wants to poll a very wide audience with-
out using an actual polling system.4

XOXO

XOXO stands for eXtensible Open XHTML Outlines and is pronounced “ecks oh ecks oh,”
“zho-zho,” or “sho-sho,” depending on whom you ask. It’s a very simple format (simpler
than the pronunciation, it seems) used for describing an outline of a document or a
blogroll-like subscription list. It’s very easy to use—this example is from the XOXO Wiki
(http://microformats.org/wiki/xoxo):

<ol class='xoxo'>
Subject 1

subpoint a
subpoint b

Subject 2
<ol compact="compact">

subpoint c
subpoint d

Subject 3

subpoint e

As you can see, all that distinguishes a XOXO-formatted outline from a garden-variety
ordered (or unordered) list is the presence of a class name of xoxo at the very top, so
there’s nothing here very remarkable—but wait. Those of you who have been paying
attention will notice the presence of the deprecated compact attribute. As discussed
earlier, this attribute was designed to indicate to user agents that a list should be rendered

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

136

4. Technorati used VoteLinks during the 2004 US presidential elections, and http://folksr.de/
experimented with it during the 2006 World Cup.

7656Ch05.qxp 11/16/06 11:29 AM Page 136

“in a compact way.” In the case of XOXO, the format specification suggests using a CSS2
attribute selector to hide any menu with this attribute, like this:

ol[compact="compact"] { display none;}

With this, the example preceding would render as shown
in Figure 5-6.

The compact attribute has been deprecated; the brains
behind XOXO are aware of it and have claimed to be
“repurposing” an obsolete presentational attribute for
semantic use. Fair enough, I do the same with the <small>
element, but be aware that using the compact attribute
will cause your document to fail validation, which may or
may not be important to you.

Remember also that if you use display: none in the way suggested, you’ll need to then
use JavaScript to allow users to view the compact menu should they wish to. The menu will
also be fully visible to any user agent not displaying the CSS or not understanding the CSS,
unless said user agent knows what to do with a compact menu (most do not, which is why
the attribute is obsolete in the first place).

It is possible to enhance your outline by using some common properties such as text,
description, url, title, type, and rel, though these have not been standardized and are
merely suggested within the XOXO specification. You can include these properties explic-
itly within the markup, like this:

<ol class='xoxo'>

<dl>
<dt>text</dt>
<dd>item 1</dd>

<dt>description</dt>
<dd> This item represents the main point ➥

we're trying to make.</dd>
<dt>url</dt>
<dd>http://example.com/more.xoxo</dd>

<dt>title</dt>
<dd>title of item 1</dd>

<dt>type</dt>
<dd>text/xml</dd>

<dt>rel</dt>
<dd>help</dd>

</dl>

This can be a little unwieldy though, and it’s possible to include much of this information
with standard (X)HTML attributes, like this:

PURPOSE-BUILT SEMANTICS: MICROFORMATS AND OTHER STORIES

137

5

Figure 5-6.
A XOXO-formatted
list, with “compact”
nested lists set not to
display

7656Ch05.qxp 11/16/06 11:29 AM Page 137

<ol class='xoxo'>
<a href="http://example.com/more.xoxo" ➥

title="title of item 1" type="text/xml" rel="help">item 1
<dl>
<dt>description</dt>
<dd>This item represents the main point we're ➥

trying to make.</dd>
</dl>

The XOXO format is being used on the Web already (podcast website Odeo displays user
subscription lists as XOXO-formatted outlines), though at the time of writing it’s not nearly
as prevalent as hCard or hCalendar. It can be argued that, as the root class name of xoxo
can be implied rather than included explicitly, XOXO is actually used an enormous amount
already, but that may be being overly generous.

XFN

XFN, or the XHTML Friends Network, uses the rel attribute, this time to describe, as a list
of space-separated values, the relationship between you and the person you’re linking to
rather than the relationship between documents. With the increasing popularity of online
social networks, XFN allows for the creation of a network based upon personal relation-
ships rather than simply “who’s linking to whom.” It is again, like rel-nofollow and
VoteLinks, an attempt to convey additional information about the relationship between A
and B (and between B and A, if the two parties are linking to one another with identical or
differing values) while remaining within the boundaries of standard markup.

There is a small range of values available (purposefully small—the intention was to create
a small range and then expand if it proved necessary, rather than create a large range of
values that never got used), grouped into seven categories: friendship, physical, profes-
sional, geographical, family, romantic, and identity. The values allowed for each category
are as follows:

Friendship: contact, acquaintance, friend

Physical: met

Professional: co-worker, colleague

Geographical: co-resident, neighbor

Family: child, parent, sibling, spouse, kin

Romantic: muse, crush, date, sweetheart

Identity: me (used to link to yourself at a different URL)

They’re all fairly self-explanatory, and some of them are symmetric; if you described a rela-
tionship with someone you met at a conference with rel="met", the reverse relationship
would naturally be the same. Some are inverse; the inverse of rel="child" is rel="parent".

There are many advantages in describing your relationships in this way. Ultimately, this is
not so very different from any other social network service such as Friendster.com, but its

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

138

7656Ch05.qxp 11/16/06 11:29 AM Page 138

key difference is that it does not rely on any external service. People are already linking to
one another, and XFN doesn’t require much in the way of specialist knowledge beyond
that which it took to create the link in the first place (unlike, for instance, the Friend of a
Friend, or FOAF, service, which requires information stored in RDF-XML—I’ll mention this
service again in the “The Semantic Web” section later in this chapter). So it’s very quick
and easy to include this metadata—most blog software already comes with the ability,
either natively or via plug-ins, to include XFN information in your lists of links.

It is a very natural way of creating a social network with very little effort, and the more
people use it, the richer and more useful the network becomes. And as it’s not relying on
a single service, but is instead distributed across millions of blogs and other websites, it has
no single point of failure either; if one person drops off the Internet, there are many oth-
ers to keep things going (and provide relationship information even about someone
whose web presence is no longer available—whether that’s a good or bad aspect, I’ll leave
up to you).

XFN is already in wide use today, and there are a number of tools that allow you to spider
websites to see how people relate to one another such as XFN Graph (http://xfngraph.
sourceforge.net/), shown in Figure 5-7, and XFNRoller (http://xfnroll.new-bamboo.
co.uk/).

Figure 5-7. XFN Graph in action, spidering Eric Meyer’s website

PURPOSE-BUILT SEMANTICS: MICROFORMATS AND OTHER STORIES

139

5

7656Ch05.qxp 11/16/06 11:29 AM Page 139

Rubhub (www.rubhub.com/) is a simple XFN lookup engine for determining the relation-
ships between people. You enter a URL, and it returns a list containing details of outgoing,
reciprocal, and incoming relationships, as Figure 5-8 demonstrates.

Figure 5-8. A page of Rubhub results, with details of all outgoing, reciprocal, and incoming
relationships related to a single website

There’s also a wide variety of favelets and browser extensions that reveal XFN metadata as
you browse; have a look at the XFN implementations page (http://microformats.org/wiki/
xfn-implementations) for details.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

140

7656Ch05.qxp 11/16/06 11:29 AM Page 140

hReview

Finally we have the hReview microformat, a format that describes reviews of products,
businesses, events, places, and so on. I’m covering it here and now, despite it still being in
draft form, because it is already in use in various places and makes use of existing micro-
formats as well. The chances are that it won’t change in any great way (and if it does, then
it is likely to be backwardly compatible with itself as you’ll see further in this section) but
do check the hReview Wiki (http://microformats.org/wiki/hreview) before imple-
menting it yourself.

The intention of the format is to greater facilitate the sharing, distribution, syndication,
and aggregation of reviews. Just as hCard encourages the standardization of contact details
and hCalendar encourages the standardization of event listings, hReview encourages the
standardization of reviews for much the same purpose; for instance, if you wanted to read
reviews of a new brand of LCD television, an aggregator could theoretically deliver to you
any number of hReview-formatted reviews in one go, saving you from having to hunt
around different review websites and trying to compare disparate review methodologies.

There are only two required components of an hReview: a root class name of hreview and
some item info, which must at least provide a full name of the item under review (fn). So
at its absolute minimal, an hReview can look like this:

<div class="hreview">
<p class="item">The Royal Tenenbaums
</p>
<p>Hilarious, touching and totally original comedy about a
dysfunctional family's sudden, unexpected reunion.</p>
<p>The Royal Tenenbaums tells the story of Royal Tenenbaum
(Gene Hackman) and his wife Etheline (Angelica Huston)
who had three child prodigies...</p>

</div>

Most reviews will come with a little more metadata though (and probably a few more
paragraphs of actual review, but that isn’t why we’re here)—the name of the reviewer, the
product type, the date of the review, a rating, and so on. The current hReview specification
(0.3 at the time of writing) provides the following properties, all of which are optional
except for item as already mentioned: version, summary, type, item, reviewer,
dtreviewed, rating, description, tags, permalink, and license.

Let’s start by adding a version, which relates to the version of the hReview specification
rather than the version of the review itself. By adding in a version number, you’re stating
that your review is written specifically to that version of the hReview specification.
Omitting it means you’re stating that your review is backwardly compatible with past ver-
sions, which is the preferred case. If you do find you need it or want it, then you add the
version like this:

0.3

This number would be fairly meaningless to anyone not familiar with the hReview spec,
though, so you can incorporate that span into a natural sentence, like this:

PURPOSE-BUILT SEMANTICS: MICROFORMATS AND OTHER STORIES

141

5

7656Ch05.qxp 11/16/06 11:29 AM Page 141

<p>This review uses version 0.3➥

of the hReview specification.</p>

Because the version of the review format is not crucial information, I would suggest visually
deemphasizing references to it, perhaps with a smaller font or a low-contrast color.

Next, we’ll include a summary, which should be a short overview of the review and can act
as a title. In our example, this is as simple as adding a class name of summary to one of the
opening paragraphs:

<p class="summary">Hilarious, touching and totally original
comedy about a dysfunctional family's sudden, unexpected reunion.</p>

Now let’s look closer at the item property. We’ve already included an item and an fn to
indicate the name of what’s being reviewed, but we can also provide a URL for the item
under review and a photo URL. This is also where previous microformats come in—if the
item being reviewed is a person or a business, then the item information must be provided
in the form of an hCard; if the item is an event, then the item information must be provided
in the form of an hCalendar vevent. Because the item we’re reviewing is a movie, we’ll just
provide a URL to the movie’s entry on the Internet Movie Database (http://imdb.com):

<p class="item"><a href="http://imdb.com/title/tt0265666/" ➥

class="url fn">The Royal Tenenbaums</p>

Furthermore, we can use the type property to indicate what it is that’s being reviewed,
with allowed values of product, business, event, person, place, website, and url.5 Our
review is a movie, which is a product:

product

It’s probably wise to hide this with CSS, as describing something as a “product” is going to
be of little use to your readers. Some types can be inferred; for instance, if the item infor-
mation is in an hCard, the type will be either a business or a person; similarly, if the item
information is in an hCalender vevent, the type is naturally going to be an event.

Who’s reviewing this film, anyway?

<p>Reviewed by ➥

Paul Haine</p>

As you can see, the hCard crops up here as well. If the reviewer is specified, the reviewer
details must be provided as an hCard. The reviewer can be deduced by a competent
parser. If no reviewer is found within the hReview, the parser should look at the rest of the
page for an <address> element, and if it still cannot provide an author, it should look in
any available Atom or RSS feeds for the <author> element. This could be a little unpre-
dictable, so it’s best to include reviewer information if possible or explicitly use the name
“anonymous” as the reviewer name.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

142

5. It’s noted within the specification that this list may grow in the future.

7656Ch05.qxp 11/16/06 11:29 AM Page 142

How about the date of the review? We use the dtreviewed property here, which must be in
the ISO-8601 format. As discussed previously, we can provide that in the form of a title
attribute on an <abbr> element to create a human-readable and a machine-readable date
at the same time:

<abbr class="dtreviewed" title="20060813T1849">August 13, 2006</abbr>

The review itself is marked out by the description property. As a typical review could run
for several paragraphs and contain lists and other block-level elements, a <div> is the
most appropriate element to use here:

<div class="description">
<p>The Royal Tenenbaums tells the story of Royal Tenenbaum
(Gene Hackman) and his wife Etheline (Angelica Huston)
who had three child prodigies...</p>

</div>

We then have the rating property. A typical hReview will provide a rating from 1 to 5, with
1 being the worst rating and 5 the best. The hReview creator (http://microformats.org/
code/hreview/creator) formats ratings with an <abbr> element, a title attribute, and
the use of a star entity (★):

<abbr title="4" class="rating">➥

★★★★☆</abbr>

which displays stars as shown in Figure 5-9.

The title attribute is used here in the same way as with the
dtreviewed property: to give aggregators and search engines
the actual rating, while the stars are used to give a visual
indicator to human readers. But what if you don’t want to rate
things on a scale of 1 to 5? What if you prefer to give marks out
of 10, 15, 20, or more? This is also accounted for with the abil-
ity to provide a best or worst value. Imagine that we wanted to
rate The Royal Tenenbaums as 25 out of 30. In hReview, we
would do this:

<p class="rating">Rating: 25➥

out of 30</p>

In this way, you’re free to use whichever rating system you like (within reason), and
hReview aggregators can still determine what your rating of the item is.

Finally, you’ve seen the tags, permalink, and license properties elsewhere. The tags
property is simply the rel-tags microformat described previously in this chapter, the
permalink property is actually just rel-bookmark that was discussed back in Chapter 2, and
the license property is simply the rel-license format also described previously in this
chapter, so there’s no need to cover them again here.

PURPOSE-BUILT SEMANTICS: MICROFORMATS AND OTHER STORIES

143

5

Figure 5-9.
A four-star rating. The
title attribute is used on
the <abbr> element to
provide an actual
numerical value.

7656Ch05.qxp 11/16/06 11:29 AM Page 143

As I’ve said, hReviews are already turning up all over the place. Yahoo! is a particular fan of
them, with Yahoo! Local (http://local.yahoo.com/), Yahoo! Tech (http://tech.yahoo.
com/), and Yahoo! UK Movie Reviews (http://uk.movies.yahoo.com/movie-reviews/) all
now formatting user reviews with hReview properties and giving the format a certain
amount of corporate credibility. Other implementations include Cork’d (http://corkd.com/),
a wine review site created by Dan Cederholm and Dan Benjamin; OpenGuides
(http://openguides.org/), a community-maintained guidebook project; Vitamin
(www.thinkvitamin.com/), a web designer resource site; and many others that you can
find on the hReview home page along with a range of ways to create reviews, from
WordPress plug-ins to Amazon-specific creators.

And so, that’s microformats. As you’ve now seen, there are numerous ways already to
implement and take advantage of them, from the hCard, hCalendar, and hReview creators
to the Technorati microformats search engine that indexes them, to the Dreamweaver
microformats extension (www.webstandards.org/action/dwtf/microformats/) that pro-
vides a quick-and-easy way to insert microformats into your content without hand-coding.

In the end, the strength and usefulness of microformats lives or dies with the number of
people using them. It’s a chicken-and-the-egg scenario: if there are no mainstream tools to
take advantage of microformat metadata, there’s no point in including microformat meta-
data on our pages; but if there’s no microformat metadata on our pages, nobody will
develop the tools. Luckily though, it seems that tools and data are both being very health-
ily developed right now—there’s a lot of enthusiasm about microformats within the web
standards world, and many tools have already been created that take advantage of them.
The notion of extending our documents in a rich, semantic way is a very web standards
way of thinking, which could explain the appeal—we’re all striving to write hardcore, well-
structured, meaningful markup, and the ideas and guiding principles behind microformats
fit very well those efforts.

It is, of course, quite conceivable that they will fail, perhaps being abused by spammers
and charlatans like the <meta> element, or perhaps they will simply find a niche but never
revolutionize the mainstream. It’s very easy to get carried away when something like this is
new, so I don’t want to embarrass myself by loudly proclaiming now that microformats are
the future and everyone should get in on the ground floor, only to look back a year or two
later and find that it didn’t happen.

But, they might be the future, and given how little extra effort it is to encode your
<address> as an hCard or your blogroll as an XFN- and XOXO-formatted list, you could
help them on their way with very little cost but substantially more gain. And then, if they
do turn out to be wildly successful, you’ll be able to say that you were in there on the
ground floor as well.

If you are interested in immersing yourself more deeply in microformats, you’ll be
interested in the forthcoming book Microformats by John Allsop (friends of ED).
It should be available in early to mid 2007.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

144

7656Ch05.qxp 11/16/06 11:29 AM Page 144

The Semantic Web
So far, we’ve just been looking at ways in which (X)HTML can be enhanced with our own
home-grown semantics and structures. This is fine; it’s easy to implement as you only need
to know (X)HTML, there are practically no issues with browser support or compatibility as
no new standards are being used, and provided these structures are all well-formed, then
a variety of parsers, aggregators, and the like can exploit their presence.

But, using plain-vanilla (X)HTML can only get you so far. Ultimately, (X)HTML is just a
markup language for marking up chunks of a document, and there’s very little way to
express how those chunks relate to one another, what they mean, or even what they are.
Because web pages are designed generally for humans first and machines second, we can
infer relationships and structure from what we see (or hear, if the content is being read
aloud).

For instance, if we are looking at a list of products on an online store, we can work out
which price and description relates to which item due to the proximity of the different ele-
ments and various other factors—humans are, by and large, pretty good at working these
things out. Machines, on the other hand, are not. Because (X)HTML provides no way to say
that this price and this description relate to this product—or even to say that this is a price
and this is a description—beyond a very liberal, open classification and identification with
the id and class attributes, machines are unable to make much sense of the listing.

If machines were able to make sense of such things, understanding how the data related to
real-world objects, the advantages would be that it would be easier to share data between
disparate applications, and machines would be able to research and gather information
with less human intervention. This, then, is the objective of the Semantic Web: to make
web pages understandable to machines, to ultimately benefit humans; for the web to not
simply be about the interchange of documents, but also about the interchange of data.
The Semantic Web project is currently under the direction of Tim Berners-Lee, the creator
of the World Wide Web, so it has a certain amount of credibility. As Tim stated in 1999:

“I have a dream for the Web [in which computers] become capable of analyzing all the data
on the Web—the content, links, and transactions between people and computers. A
‘Semantic Web,’ which should make this possible, has yet to emerge, but when it does, the
day-to-day mechanisms of trade, bureaucracy and our daily lives will be handled by
machines talking to machines. The ‘intelligent agents’ people have touted for ages will
finally materialize.”

So, it all sounds wonderful, so long as we don’t allow our machines to go all Terminator on
us, but how’s it going to work? Well, the technical specifics of it all are a little beyond the
scope of this book, but I’ll try and give you a meaningful overview without lapsing into a
“The Internet is a series of tubes”–style gaffe.6

There are several technologies that make up the Semantic Web. First of all, there’s the
eXtensible Markup Language, XML. XML allows people to create their own tags to describe
their content (for instance, you could store a collection of recipes in XML format with

PURPOSE-BUILT SEMANTICS: MICROFORMATS AND OTHER STORIES

145

5

6. If you don’t get the reference, you’re not online nearly enough.

7656Ch05.qxp 11/16/06 11:29 AM Page 145

recipe-related tags such as <recipe>, <ingredients>, <quantity>, and so on) and then
various scripts, services, and applications can manipulate those tags in a variety of inter-
esting and useful ways. However, using XML doesn’t automatically make this content use-
ful to machines as there’s no meaning being conveyed. To a human, it’s easy to see that
the <recipe> is the root container tag, but to a machine that’s just a generic root con-
tainer tag—it may as well be a <div> or a <body>.

The meaning is therefore expressed using the Resource Description Framework, or RDF.
RDF works by storing information about what an item is. It does this with a subject/
verb/object structure known as a triple, as I mentioned earlier. In other words, an item (for
instance, a person, such as myself) has various properties (such as “is the author of”), and
these properties have values (HTML Mastery). In this way, information about what the
objects described by the XML structures actually mean can be expressed. Further to this,
each subject, verb, and object is given a Universal Resource Identifier, or URI; this means that
each term is tied to a unique definition that allows other people or machines to locate it.

So now we have a syntax (the XML), a dictionary (of sorts) to explain what that syntax
means (the RDF), and a map detailing what each of those meanings refers to (the URIs). By
describing our content and data in such a way, we’re allowing both the data and the rules
about that data to exist together—allowing any capable system to interpret and utilize it,
even if the data and rules were developed in an entirely different system.

It doesn’t end there though; this system has a possible flaw, in that multiple databases
could conceivably use different URIs for the same thing. For instance, a database describ-
ing city features could refer to both pavement and sidewalks, the same thing but with
potentially different URIs. Any system trying to utilize this data needs to somehow know
that these should be considered as different terms for the same item.

A solution to this is the use of an ontology, a document that defines terms and the rela-
tionships between them—basically a taxonomy that uses inheritance principles, classes and
subclasses, and a set of logical rules to derive and infer information from it. (For instance,
there’s an ontology for tags of the microformat variety available here: www.holygoat.co.uk/
owl/redwood/0.1/tags/.) These ontologies can then be referred to by any service that
needs to determine a meaning. These ontologies are created in another technology known
as Web Ontology Language, or OWL for short.

Yes, that should probably be WOL instead of OWL, but why pass up an opportunity for
a good acronym, eh? OWL is an extension of RDF and is derived from the DAML+OIL
Web Ontology Language. Confused yet? It also comes in three varieties: OWL Lite, OWL
DL, and OWL Full, and if you’re interested in learning more, I suggest looking at the
“W3C OWL Web Ontology Language Overview” at www.w3.org/TR/owl-features/.

For a more detailed overview of RDF, I suggest “What Is RDF?,” originally written by
Tim Bray in 1998 but updated by Dan Brickley in 2001 and Joshua Tauberer in 2006,
at www.xml.com/pub/a/2001/01/24/rdf.html.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

146

7656Ch05.qxp 11/16/06 11:29 AM Page 146

The final piece of the puzzle is the notion of agents. Agents will be the tools that reach
out into the Semantic Web to answer your queries, piecing together data from a variety of
sources before returning you an answer (or multiple possible answers). Think of them as
intelligent search engines; for instance, if you needed to book an appointment with a doc-
tor who specialized in the treatment of a particular condition, but your appointment
shouldn’t clash with any other appointment in your diary, you should be treated some-
where within a reasonable distance from your home at a clinic with a trusted rating, and
you should be able to afford the treatment. On today’s Web, to determine this would
require you to

Locate some appropriately nearby clinics.

Locate information on the quality of the clinics.

Locate information on the doctors at the clinics.

Locate information about possible appointments available at the clinics.

Cross-check those available appointments with existing appointments in your calendar.

Check that you can afford the treatment by looking at your bank details.

Do it all again if nothing appropriate comes up.

On the Semantic Web, because (ideally) data could be freely interchangeable between
services—in this case, clinical data, information on the doctors, bank details, personal cal-
endar details, location details—a suitably intelligent agent would be able to filter through
all of that information on your behalf, possibly delegating areas of responsibility to other
agents, and return to you a list of possibilities. From your perspective, this could take a
matter of moments, whereas before it might have taken hours, and you would have had to
locate and sift through the data yourself.

But is all of this just theory? Not entirely—though we’re a long way off from the situation
where agents can seamlessly scour the web for free data and understand it well enough to
understand our own queries, there are some implementations already.

The Dublin Core Metadata Initiative

With the current enthusiasm regarding microformats, it’s easy to overlook those who have
been getting on with metadata quite nicely for a few years now, thank you very much. The
Dublin Core Metadata Initiative, or DCMI, is one such initiative, which may not be as fash-
ionable among standards-based designers—certainly not as fashionable as microformats
currently are—but nevertheless has been around for roughly 10 years and has carved out
a healthy niche in the public and academic sectors; universities, libraries, publishers, gov-
ernments, and so on. It’s a nice reminder to us who are firmly entrenched in the web stan-
dards world that there exists a whole lot of other work out there that’s worth considering
as well.

The DCMI provides, via the Dublin Core Metadata Element Set (DCMES), 15 metadata
elements: title, creator, subject, description, publisher, contributor, data, type,
format, identifier, source, language, relation, coverage, and rights, all of which are
optional and can be repeated within the same document. Those 15 belong to the simple set;
there’s also a larger qualified set that includes audience, provenance, and rightsholder

PURPOSE-BUILT SEMANTICS: MICROFORMATS AND OTHER STORIES

147

5

7656Ch05.qxp 11/16/06 11:29 AM Page 147

elements plus a number of qualifiers that allow you to further specify and refine your meta-
data. The intention of Dublin Core is much like that of the original <meta> element: to pro-
vide extra information on what a resource is and what it contains. The overall aim is to aid in
effective search and retrieval. The Dublin Core organization itself describes Dublin Core as
being a “small language for making a particular class of statements about resources.”

The guiding principles, listed here, of the DCMI have much in common with other meta-
data initiatives:

The one-to-one principle: This means that DC metadata refers to one version of a
resource and one only; the creator of a digital image of a painting is not necessar-
ily the same as the creator of the original painting.

The dumb-down principle: This relates to the potential for refining the original 15
metadata elements with qualifications; the metadata should still be understandable
without those qualifications—which are about refining the metadata rather than
extending it.

Appropriate values: Basically this just means that it might be a machine reading
your metadata but it might also be a human, so use values that are appropriate and
useful as an aid to discovery.

Most of the DCMES are pretty self-explanatory, and they can either be included with your
content via a <meta> element or a <link> element if the content is (X)HTML, or separately
from the content in the form of an RDF file (which is of more use if you’re categorizing
non-text documents, files, and objects). Let’s look at including them within an XHTML doc-
ument. Take the date property, for instance; within a document, it would be referenced
like this:

<meta name="DC.date" content="2006-08-16" />

This property can be refined by including qualifiers of created, valid, available, issued,
modified, dateAccepted, dateCopyrighted, and dateSubmitted. Qualifiers are used like
this:

<meta name="DC.date.created" content="2006-08-16" />

If the DC element is a reference to an external resource, it’s preferable to use the <link>
element instead:

<link rel="DC.relation" href="http://www.example.org/" />

Qualifiers of the relation property include isVersionOf, isReplacedBy, replaces,
requires, isPartOf, and several others. Usage of qualifiers within a <link> is the same as
in <meta>:

<link rel="DC.relation.replaces" href="http://www.example.org/" />

What about RDF? A DC RDF file could look something like this (this example was taken
from “Using Dublin Core,” http://dublincore.org/documents/usageguide/#rdfxml):

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

148

7656Ch05.qxp 11/16/06 11:29 AM Page 148

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">
<rdf:Description rdf:about=➥

"http://media.example.com/audio/guide.ra">
<dc:creator>Rose Bush</dc:creator>
<dc:title>A Guide to Growing Roses</dc:title>
<dc:description>Describes process for planting

and nurturing different kinds of rose bushes.</dc:description>
<dc:date> 2001-01-20</dc:date>

</rdf:Description>
</rdf:RDF>

This example is describing an audio recording of a guide to growing roses. The resource
was created by someone named Rose Bush on January 20, 2001, and comes with a title and
a description. This RDF file can then be stored in a database or on a server and used as a
reference point for the audio file.

The DC also includes the notion of a controlled vocabulary, which is a set of predefined
terms to avoid inconsistencies (like our earlier example of both pavement and sidewalk). If
the vocabulary can be controlled, then metadata can be more accurate and machines
more likely to understand it. Examples of such vocabularies include the US Library of
Congress Subject Headings and the US National Library of Medicine Medical Subject
Headings. A downside is that controlled vocabularies need someone to control them, an
administrative body of some kind—someone to create, review, update, and distribute the
information. Those creating the metadata must also be trained in using the vocabulary, so
they know that there exists an approved term in the first place.

As you might expect of a system that’s been around for more than a decade, there’s an
abundance of tools available for creating, using, and searching for DC metadata. When it
comes to viewing DC metadata, there’s naturally a Firefox extension to view DC metadata by
Patrick Lauke (www.splintered.co.uk/experiments/73/). There’s a variety of DC retrieval
tools, such as a URL search and citation tool by StudentABC (www.studentabc.com/search),
which allows you to retrieve DC metadata from a resource and format it as a citation, and
also some DC creation tools, some automated and some not. A detailed list of resources can
be found on the DC website (http://dublincore.org/tools/).

Structured Blogging

Structured Blogging (www.structuredblogging.org/), or SB, is a recent initiative that
combines microformats with some of the principles of the Semantic Web. Plug-ins are
offered for the Movable Type and WordPress blogging platforms that create tailored post
windows specific to different types of content. For instance, if you wanted to write a
review of The Royal Tenenbaums in a regular blog, you would normally insert all of your
content into the same window as all of your other articles, reviews or not. While you could
style posts in review categories differently with a little server-side script, a little client-side
styling, and a bit of cunning, this is only going to change the appearance; underneath that,
you’re still lumping all of your data in the same way. There’s no semantic difference

PURPOSE-BUILT SEMANTICS: MICROFORMATS AND OTHER STORIES

149

5

7656Ch05.qxp 11/16/06 11:29 AM Page 149

between a review of a movie and, say, a rant about the queues in your local supermarket,
or an explanation of a new coding technique.

With the Structured Blogging plug-ins, each type of article comes with a range of type-
specific fields. Figure 5-10 is a screenshot from WordPress of the “review movie” type.

Figure 5-10. A section of the “post a movie review” window, as provided by the WordPress
Structured Blogging plug-in

As you can see, there are a lot of extra fields there: links to IMDB, information about the
director, the studio, the writer, the cast, the duration, the genre, and so on—enough to
create a comprehensive overview of a movie. Alternatively, you could review an album, a
book, a café, a club, a restaurant, a hotel, some software, or write up an event, talk about
a video or a song, and much more besides; each type comes with its own range of specific
fields, allowing the author of the content to focus on filling the information in instead of
worrying about how to format with the traditional single–text area blog post editor.
Further advantages include being able to access specific fields from the database instead
of trying to pick bits out of an entire article.

I said that it used microformats, and it does. The reviews, for instance, are formatted with
hReview markup; other formats currently supported are hCard, hCalendar, rel-license,
rel-tag, XFN, and XOXO. This markup is present not only when the content is viewed in
a web browser, but also within syndicated feeds, so the data and the metadata are
intertwined.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

150

7656Ch05.qxp 11/16/06 11:29 AM Page 150

What the SB plug-ins also do is output the same content as XML—also within the content,
so it’s present not just in browsers but in feed readers as well. This XML isn’t visible unless
the source is viewed, and looks somewhat like this:

<script type="application/x-subnode; charset=utf-8">
<!-- the following is structured blog data for machine readers. -->
<subnode alternate-for-id="sbentry_1" ➥

xmlns:data-view="http://www.w3.org/2003/g/data-view#" data- ➥

view:transformation=➥

"http://structuredblogging.org/subnode-to-rdf-interpreter.xsl"➥

xmlns="http://www.structuredblogging.org/xmlns#subnode">
<xml-structured-blog-entry xmlns="http://www.structuredblogging.org➥

/xmlns">
<generator id="wpsb-1" type="x-wpsb-post" version="1"/>
<review type="review/movie"><subject ➥

name="The Royal Tenenbaums" year="2001" length="109" ➥

category="comedy" media="dvd"
imdburl="http://imdb.com/title/tt0265666/" ➥

writer="Owen Wilson" director="Wes Anderson" producer="Wes➥

Anderson" studio="Touchstone Pictures" distributor="Bennyvista"➥

image="http://www.royaltenenbaums.com/images/royal_tenenbaums_➥

dvd.jpg">
<upc media="dvd"/></subject><rating max="5" min="0">4</rating>
<description>The Royal Tenenbaums tells the story of Royal Tenenbaum
(Gene Hackman) and his wife Etheline (Angelica Huston) who had three
child prodigies...</description></review>
</xml-structured-blog-entry>
</subnode>
</script>

By including this XML within the boundaries of each post, machines are better able to
exploit it and understand the meaning of the content of the post itself. Aggregators, appli-
cations, and search engines can all use this information without trying to parse the natural
language of the review. The XML essentially is a way of saying to external services, “Here’s
what all this means, do what you like with it.”

Criticisms of SB point out one of the flaws that Doctorow discussed in his article on meta-
data: people are lazy. In an article entitled “Structured Blogging Will Flop” (http://paul.
kedrosky.com/archives/002215.html), Paul Kedrosky argues that this level of structuring
is simply beyond the interests of most people, pointing out the common situation of
Outlook inboxes being packed with thousands of e-mails despite the functionality to cre-
ate folders and structure. A counter argument is that people are happy to fill out extra
fields if there’s a perceived benefit to them—hence why thousands of people make little
complaint about filling in product details on eBay. Of course, the easier this is, the better,
and both eBay and the SB plug-ins contain “lookup” functionality to prefill many common
fields.

PURPOSE-BUILT SEMANTICS: MICROFORMATS AND OTHER STORIES

151

5

7656Ch05.qxp 11/16/06 11:29 AM Page 151

Other implementations

The Friend of a Friend, or FOAF (www.foaf-project.org) mentioned earlier can be con-
sidered as an implementation of the Semantic Web as it uses RDF and OWL to create
descriptions of how person A is related to persons X, Y, and Z, and those people can also
create their own FOAF file that refers to still more people. It’s much like XFN, except it
uses a different language (you don’t need to know how to write RDF as there’s a FOAF-
creator available at http://htmlmastery.com/s/foaf/). There are also existing ways to
browse FOAF data, such as the FOAF Explorer (http://xml.mfd-consult.dk/
foaf/explorer/), Foafnaut (http://foafnaut.org/), and FoaFiler (www.foafiler.com/).

Other implementations include Piggy Bank (http://simile.mit.edu/piggy-bank/), a
Firefox extension that turns the browser into a “Semantic Web browser” by extracting
information from existing web pages and storing it locally in RDF (either by extracting
from existing RDF files or by a process known as “screen scraping”). That data can then be
browsed independently from the original website and in conjunction with data from other
websites—for instance, combining restaurant location information, cinema times, and
Google Maps data to allow you to plan your evening through one interface, rather than
three different websites.

There are criticisms of the Semantic Web, though—there are concerns, for instance, about
a possible lack of privacy. As the system relies upon everything (not just web pages but
people too) being uniquely identifiable, it could be much harder to remain anonymous;
there’s also an issue of censorship; if the machines can understand our data that much
easier, then it therefore becomes easier to recognize and block certain types of content—
a handy ability for both repressive governments and overzealous parents.

Another criticism is that there appears to be a need for a rigid taxonomy, which isn’t where
the web appears to be heading right now, preferring loose, organic collections of user-
authored categories, sometimes referred to as a folksonomy. Could the Semantic Web
make use of such collections?

Despite these concerns, it remains an area with a lot of potential to make life easier for us
all, so it’s certainly worth keeping an eye on where it goes in the future.

Web 2.0
To round off this chapter, let’s talk about Web 2.0, something that I’m sure many of you
have heard of already. The most common Web 2.0–related question I’ve heard is, “What is
it?” and the answer can depend on whom you ask. Is it Ajax? Is it marketing? Is it Flickr? Is

It’s true that there are plenty of “mash-ups” between Google Maps and other services,
but these all still require somebody to code it up for you; the idea behind the Semantic
Web is that all data would be interoperable, so you wouldn’t need to create special
cases—everything would just work with everything else.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

152

7656Ch05.qxp 11/16/06 11:29 AM Page 152

it Google Maps? Is it the Semantic Web, a concept, a methodology, a new way of thinking?
The answer is all of the above (just not necessarily all at once).

Web 2.0 began life as a title of a suits-and-boots web conference by O’Reilly (www.oreillynet.
com) in 2003, and was used simply as a means of explaining to the crowd of VCs and corporate
minions that not only was the web not going away but that it seemed to be changing for the
better. New websites and web-based applications were continuing to crop up, companies that
had survived the dot.com bubble burst appeared to be thriving, and people were more and
more becoming not just spectators of content but producers of it as well. As a marketing term,
Web 2.0 is quite effective, indicating a new and improved “version” of the web, but a lot of the
typical Web 2.0 behaviors stemmed from websites that predate the term by a good number of
years.

These days, Web 2.0 means a lot more than just a management-friendly buzzword, having
been appropriated by the web development community at large to refer to a new ideol-
ogy about how websites and web applications ought to be developed, an ideology that has
much in common with the ideas found in microformats and the Semantic Web—open,
sharing networks where data is interoperable and people participate as much as they con-
sume (if not more).

There are a few elements that people have come to associate with self-styled Web 2.0 sites
and applications; on the design side we see reflections, drop shadows, and pastel colors,
and on the code side, we see Ajax in action and references to Python and Ruby on Rails.
So common have these elements become that you can even check to see whether your
website is Web 2.0 by running it through a tongue-in-cheek Web 2.0 Validator
(http://web2.0validator.com/). It’s easy to make fun, but the visuals can be just as
important as the functionality; delivering a rich, usable, and innovative interface to the
user is a key Web 2.0 concept.

There are several other guiding principles as laid out in “What is Web 2.0” by Tim O’Reilly
(www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html). One
of these is “the web as platform,” basically meaning that the Web itself is used as the basis of
your applications rather than the local operating system, leading to a greater level of device
independence and greater mobility; your data is no longer tied to a specific desktop PC.

Using the web as an application base is not a new idea—go back a few years to when
Microsoft and Netscape were both trying to provide the browser via which you would
access the Web, and you’ll find very similar notions then. The difference between then and
now is that it’s less about the browser and more about the web services themselves. As it
turned out, there wasn’t as much value in being the default browser as hoped for; instead,
the value came from the services online.

Then there’s the notion of harnessing collective intelligence—Wikipedia, BitTorrent (a file-
sharing network where you share chunks of the same file you’re downloading, while you’re
downloading it), Flickr, Amazon, and del.icio.us (a web-based bookmark manager with
social networking capability) all do this, with their usefulness determined by the number
of people using the services. The fact that the data these services collate is also easy to
include on your own pages and in your own services is very important; I’ve mentioned sev-
eral times now the notion that data should be interoperable and easily accessible.

PURPOSE-BUILT SEMANTICS: MICROFORMATS AND OTHER STORIES

153

5

7656Ch05.qxp 11/16/06 11:29 AM Page 153

Web 2.0, and what it means, has provoked seemingly endless debate online, but I think
once you get past the hype, the marketing and the pastel-flavored gradients, there exists
some great ideas that ultimately benefit all of us. Anything that can make content easier to
find and use, anything that can make the machines do more of the work instead of the
other way around, anything that puts people at the heart of the Web, can only be a good
thing.

Summary
As you can see, there’s a lot more to online metadata than just stuffing <meta> elements
with keywords and descriptions, and there’s a lot you can do to enhance your content no
matter what level of ability you’re at, from ensuring you use semantic class and ID names,
to microformatting your data, all the way up to using XML and associated technologies.

Once you’ve started including metadata in your pages, how little or how much you take
advantage of it is up to you. Perhaps you just want to use semantic class names to make
your markup more understandable and more reusable. Perhaps you just want to mark up
your contact details as an hCard so you start turning up in microformat-specific searches.
Perhaps you won’t take advantage of it yourself, but allow others to take advantage of it
instead. Whatever the situation, including accurate metadata may be an extra overhead on
the author, but ultimately everyone benefits from it, and the more people get on board,
the more useful it will be in the future.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

154

7656Ch05.qxp 11/16/06 11:29 AM Page 154

7656Ch05.qxp 11/16/06 11:29 AM Page 155

7656Ch06.qxp 11/16/06 11:28 AM Page 156

6 RECOGNIZING SEMANTICS

7656Ch06.qxp 11/16/06 11:28 AM Page 157

An important part of creating well-formed, well-structured, semantically-rich websites is
recognizing the opportunities to use semantic and structural markup when they come
along—and they come along more often than people realize. Many web authors, particu-
larly those transitioning from table-based layouts to CSS-based layouts, can easily overlook
the fact that the average layout can be teeming with semantic and structural opportuni-
ties: paragraphs, headings, lists, and more.

The purpose of this chapter is to help you learn to see a design structurally and semanti-
cally instead of simply visually, to learn to recognize opportunities to hook scripts and
styles onto meaningful elements. We’ll look at a range of common page elements—navi-
gation lists, footers, decorative text fragments, and so on—and examine how best to con-
vert them into solid, well-formed (X)HTML representations.

Throughout this chapter, I’ll talk about the dreaded divitis, span-mania, and classitis. These
are problems that most of us have suffered from to some degree or another. They occur
when your markup becomes saturated with unnecessary structural markup—with divs,
spans, and class attributes, the three worst offenders—usually as a result of thinking too
much about how a particular page element looks and not enough about what it means,
and also from not being aware of the alternative markup options.

Avoiding divitis
The habit of using divs in place of structural markup such as headings and paragraphs was
not initially a problem of bad practice, but of bad browsers. The problem arose when
Netscape 4 was taken into consideration. A web author could include, for instance, an
<h1> on his or her page, and then override its default margins and padding with CSS—
except Netscape wouldn’t override those default values, but would instead add to them,
making it that much harder to get your design pixel-perfect in both Netscape 4 and
Internet Explorer 4/5. The <div> element, on the other hand, comes with no default mar-
gins or padding, so a <div> with 30px of padding looks the same in both major browsers.
Divitis in this case was hard to avoid.

Nowadays, however, there is no longer any excuse for using a <div> when there’s perfectly
good structural and semantic markup available to us. Although there may be variations in
margins and padding across browsers, these differences will normally be trivial and easy to
override with CSS.

When it comes to marking up our content, dozens of different tags are available to
us. When it comes to styling, each element can be styled to include its own background
color; a background image (one that can repeat horizontally, vertically, or both); and a
border on the left, right, top and bottom sides, each of which can be given a unique color

An extreme method of dealing with margins and padding is with the Global White Space
Reset technique, described here: http://leftjustified.net/journal/2004/10/19/
global-ws-reset.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

158

7656Ch06.qxp 11/16/06 11:28 AM Page 158

and style. And you can also apply margins, padding, and a wide range of font styles. The
modern-day web designer is not lacking choice.

But let’s just be clear on something: using a <div> is not necessarily a bad thing, and I
would be surprised if you could build a complex website without using a <div> at some
point. <div> was created for a reason—in this case, to describe divisions within your con-
tent. If the elements on your page can be grouped thematically (some into a header, some
into a sidebar, some into a footer), then do so. That’s what <div> is there to do, and it will
make your life easier in the long run.

Avoiding divitis is more of a methodology than a simple checklist of “Use X tag in place of
<div>.” The key is to stop thinking visually. If you are working from a design in Photoshop or
Fireworks, then when it comes to building the site, I’ve found that it helps to begin by just
forgetting about the style and typing in all your content—or placeholder text if you don’t
have all of your content at the time (http://lipsum.com is a good source of filler text)—
straight into your document. By “content,” I mean everything—not just body text but also
any navigation, headers, footers, and so on. If something may end up as an image in the end
(e.g., a corporate logo), then don’t worry about it at this stage. Just include some text in its
place; you can always replace it with an inline image later if required.

As you do this, think about the content you’re typing, think about how you would describe
it to someone else, and think about what tags are available that fit your description. Forget
about how things are going to look for now—don’t think of an <h1> as being “large, ugly,
and bold” because that’s just how it appears by default; everything can be restyled.

Assume while you’re doing this that the <div> tag does not exist. Doing this will help you
avoid divitis, because it will force you to think of alternatives. So, where you may once
have marked up your company logo—often the first element on the page—like this:

<div id="header"></div>

you’ll now need to find an alternative. So, what to use instead? The most likely candidate
to me seems to be the first-level heading (the <h1>) making your company name (or blog
title, etc.) the most important heading on the page:

<h1></h1>

As noted in Chapter 2, whether your website/company name gets to be wrapped in an
<h1> or whether your page title or blog article headline gets that honor instead is pretty
much up to you—there are no hard and fast rules about this. Similarly, the number of
times you use an <h1> on a page is also not set in stone, though you’ll find the general
consensus is often that there should be only one. Also, wrapping everything in an <h1> is
an old search engine optimization trick, so overuse could see you being penalized.

Also see the <section> element that’s part of the XHTML 2.0 draft specification.
Chapter 7 provides further details on this element.

RECOGNIZING SEMANTICS

159

6

7656Ch06.qxp 11/16/06 11:28 AM Page 159

Styling the body

An element that often gets overlooked when it comes to style and structure is the <body>
itself. You’ll often see something like this:

<body><div id="container">...

But people forget that the <body> can also be a container—it can be given a width and
margins, it can be centered within the browser viewport, and so on. For instance, the sim-
ple, single-column layout in Figure 6-1 doesn’t need a master container div.

Figure 6-1. A simple, single-column web page

A quick aside: When displaying alt text in place of an image, most modern browsers
will respect the surrounding markup and display the text according to either the
browser defaults (so large and bold in the case of the <h1>) or any defined styles for
that element. For this reason, it’s a very good idea to test your site with images disabled
and make sure that the alt text is readable—it just being present in the markup may
not always be enough, particularly if you’re using dark background colors that will still
be displayed even if images are not. It’s also a good reason to avoid including the
optional width and height attributes on the , as the alt text may not entirely fit
within the boundaries and thus become unreadable.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

160

7656Ch06.qxp 11/16/06 11:28 AM Page 160

All we need to do is directly style the body with the same styles we would have applied to
the container. In this case, we just need to center the body and give it a border and some
margins. First, let’s deal with the centering, which involves a short digression.

When we wanted some content centered in the past, we used to use the <center> tag, like
this:

<center>Your content</center>

This is clearly presentational, and as noted earlier, the tag is deprecated in HTML 4.01 and
absent from XHTML 1.0, so it shouldn’t be used. I’ve noticed that the alternative, particu-
larly in WYSIWYG-generated markup, is to do either this:

<div align="center>Your content</div>

or this:

<div style="text-align: center">Your content</div>

Both of these options will get the job done, it’s true, but if you do it these ways, then you
may as well be using <center>, as it has the same meaning and is just as presentational.
The first example uses the deprecated align attribute, and the second example uses an
inline style—both are including presentational information within the document markup.

Instead, use CSS. If you want to center the content within an element, then use the
text-align property:

p {text-align: center;}

If you apply that to only one paragraph, you can see that the text is centered within the para-
graph but the paragraph itself remains in the default alignment, as shown in Figure 6-2.

I’ve heard it argued in the past that using a wrapper or container <div> is no worse,
semantically speaking, than wrapping all of your content in a single-celled table, which
would also give you that elusive 100% height container. I disagree with this. By including
your content within a table—even a single-celled table—you’re saying to the world at
large that your website consists exclusively of tabular data, which is unlikely to be true.

RECOGNIZING SEMANTICS

161

6

1. Deprecated with a vengeance—the tag appears only once, in only one sentence (see http://
htmlmastery.com/s/center). In actual fact, this tag was introduced by Netscape simply as a shorthand
way of writing <div align="center"> and was only included in the HTML 3.2 specification because it
was already in common usage.

7656Ch06.qxp 11/16/06 11:28 AM Page 161

Figure 6-2. The first paragraph has had text-align: center; applied to it,
centering the text within the paragraph

The text-align property doesn’t just affect text either—an image within a paragraph
would also be affected.

If you want to center a block on the page, then use the margin property:

p {margin-left: auto; margin-right: auto;}

This informs the browser that the left and right margins of the element in question should
expand automatically to fit within its container, which means that for this to work, the <p>
either needs to be in a container with an explicit width or it needs to have an explicit width
itself. If no width is specified, then the width value itself defaults to auto, and in such a
case, those left and right margins then default to zero.2 So, after adding some width, we
end up with the result shown in Figure 6-3.

Figure 6-3. A centered paragraph

As you can see, the entire paragraph has been centered on the page, but the text within
the paragraph remains aligned to the default left.

So that’s how content gets centered these days, which means that to center our <body>,
we just need to do this:

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

162

2. See www.w3.org/TR/REC-CSS2/visudet.html#q6.

7656Ch06.qxp 11/16/06 11:28 AM Page 162

body {
margin-left: auto;
margin-right: auto;
width: 20em;

}

Our example also has a visible border and a background color. Again, this can be achieved
by styling the body directly:

body {
background-color: #ccc;
border: 1px solid black;
margin-left: auto;
margin-right: auto;
padding: 20px;
width: 20em;

}

Now it looks as shown in Figure 6-4.

Figure 6-4. The body has been centered and bordered, but something’s not right . . .

Ahh . . . what’s happened here? The dimensions of the body are clear: the column of text
is narrow, it has a border, and its been centered on the page, just as we wanted. But the
background properties (in this case, background-color) are not respecting that, filling the
entire viewport instead. This is because browsers treat the <body> element in a “special”
way, different from that of a regular <div>, and it’s this special treatment that allows you
to, for instance, set a vertically repeating background image on your page that runs the
full height of your browser, even if there’s no content, like this (see Figure 6-5):

body { background: url(body_bg.gif) top left repeat-y;)

RECOGNIZING SEMANTICS

163

6

7656Ch06.qxp 11/16/06 11:28 AM Page 163

Figure 6-5. The body has been styled with a background image repeating in the Y axis. It stretches
the full height of the browser viewport, even though there’s no content on the page and even when
the viewport is resized.

You may have tried this with a <div> before and found one of the most well-known limi-
tations of using CSS over tables for layout: while a table could be created, given a width
and height of 100%, and then scale to fill the viewport, <div> elements just don’t work that
way (see Figure 6-6):

div { background: url(body_bg.gif) top left repeat-y;)

Figure 6-6. The div is only as large as the sum total of its height plus any margin, padding, or
height/min-height values applied to it.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

164

7656Ch06.qxp 11/16/06 11:28 AM Page 164

In this case, the div will stretch vertically only if there is content in it, and if height,
min-height, or padding has been applied to it.

For our example, where we’re styling the <body> directly, we need our <body> to act like a
<div>; otherwise, the background color will overspill. One solution is to style the <html>
element, because applying background properties to <html> will cause browsers to treat
that element in this special way, and the <body> will then treated just like any other <div>.

html { background-color: white; }

That does the trick, as shown in Figure 6-7.

Rounded-corner menus

Now consider Figure 6-8.

Figure 6-8. A navigation list with a rounded top and bottom

Figure 6-7.
The <html> root element has been styled,
which causes the <body> element to be
treated as a regular <div>.

RECOGNIZING SEMANTICS

165

6

7656Ch06.qxp 11/16/06 11:28 AM Page 165

The temptation here can often be to create markup such as this:

<div id="toproundedcorners"></div>
<div>Navigation</div>

Home
Contact
About

<div id="bottomroundedcorners"></div>

To start with, let’s look at how the markup can be improved, and forget about those
rounded corners for now. This is just a list with a heading, so it should be marked up sim-
ply as follows:

<h4>Navigation</h4>

Home
Contact
About

Now, those corners—we don’t need any <div> tags, nor do we need to use any inline
images. Because the corners are purely decorative, we should keep them out of the
markup and they should instead be included with CSS, as background images. Remember
that every block element can be given its own background image, and that these can be
positioned anywhere within that element. In our example, we have five available blocks to
use—an <h4>, a , and each of the elements—more than enough for our pur-
poses. The uppermost rounded corner image can be included as a background to the
<h4>, while the bottom image can be included as a background to the , positioned on
the bottom. First, here’s the <h4>:

h4 {
background: url(toproundedcorner.gif) top left no-repeat;

}

Figure 6-9 shows the result.

Figure 6-9. The text overlaps the image.

I’ve chosen to use <h4> in this example just because it’s a low-level heading, denoting less
importance than the higher levels, but what you use will depend on your circumstances,
what other headings are on the page, and how important you deem this list to be.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

166

7656Ch06.qxp 11/16/06 11:28 AM Page 166

Not quite what we want—the rounded edge needs to sit above the text, but here it’s
directly behind it. We could give the <h4> a fixed height, but that wouldn’t help, as the size
of the element would increase downward and the text would remain in the same place. So
instead, we need to add some padding:

h4 {
background: url(toproundedcorner.gif) top left no-repeat;
padding-top: 10px;

}

This creates a buffer zone for the image to sit in, and it has the advantage that if the text size
is increased, the space reserved for the image will remain the same, as shown in Figure 6-10.

Figure 6-10. The image now sits above the text.

Figure 6-11 shows the image with the text size increased a bit.

Figure 6-11. Still fits . . .

Including the bottom image works along the same principles. First the image is included:

ul {
background: url(bottomroundedcorner.gif) bottom left no-repeat;

}

Then a touch of padding is added to create a space for the image to rest in:

ul {
background: url(bottomroundedcorner.gif) bottom left no-repeat;
padding-bottom: 10px;

}

And that’s our div-less headed menu with rounded corners.

News excerpts

Another common page element is a news headline or blog excerpt, similar to the one
shown in Figure 6-12.

RECOGNIZING SEMANTICS

167

6

7656Ch06.qxp 11/16/06 11:28 AM Page 167

Figure 6-12. A news headline with date, excerpt, and a read more link

This could very easily be a festival of <div>:

<div class="newsitem">
<div class="headline">Adorable puppy found alive and well</div>
<div class="date">Thursday the 18th of June</div>
<div class="newsstory">The adorable puppy that was lost last ➥

Wednesday has been found...</div>
<div class="readmorelink">➥

read more</div>
</div>

Let’s again forget about appearances and think about the meaning of each item. First of
all, we see a headline. As I’m sure you’re aware by now, anything that can be described as
a headline is likely to need to be marked up as an <hn> of some kind—let’s go with an
<h3> for now.

<h3>Adorable puppy found alive and well </h3>

Then there’s the date. There’s no <date> element, so what can we use here? I’d say it
should be a paragraph, but you might also consider it to be a with a meaningful
class name of “date-time,” “datetime,” or something similar—endowing a nonsemantic
element with your own semantics. Or you could use the <abbr> trick you learned from the
section on microformats in the previous chapter. Just remember that as inline elements,
those must be included in a block element. Does this mean you’re resigned to using a <p>?

No. Look at that first <div> that contains the whole block: <div class="newsitem">. This
is actually a <div> with a purpose—it’s denoting where one news item begins and ends, so
it’s fine to leave this one in, and it also means you don’t have to describe everything within
another block-level element. Because of this, it would be perfectly valid to leave the date
floating on its own if you wanted to, but that would make it trickier to style; you would
have to style the surrounding <div>, allow that text fragment to inherit the styles, and
then override them if you wanted the other elements to appear differently.

The presence of the wrapper <div> will also help us to distinguish between headings and
paragraphs that are part of a news item and those headings and paragraphs that are not,
which is useful if you wish to style or script your news elements in a different fashion from
your non-news elements.

Then we have the news story itself, which in our example is a single paragraph, presumably
an excerpt from the main story. So, as I’ve just said, it’s a paragraph:

<p>The adorable puppy that was lost last Wednesday has been
found...</p>

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

168

7656Ch06.qxp 11/16/06 11:28 AM Page 168

Finally, we come to the read more link. This can be treated in the same way as the date—it
could be a paragraph, or it could be a generic , or it could even just be wrapped in
an <a> and left as is. So ultimately, our almost-div-less news item will look more or less like
this:

<div class="newsitem">
<h3>Adorable puppy found alive and well </h3>
Thursday the 18th of June
<p>The adorable puppy that was lost last Wednesday has ➥

been found...</p>
read more

</div>

It’s lean, meaningful, and easier to target with CSS selectors:

.newsitem {}

.newsitem h3 {}

.newsitem .datetime {}

.newsitem p {}

.newsitem a {}

I think that the ultimate example of divitis has to be when people try to create tables with
divs instead of table markup, after taking too literally the notion that “tables are bad.” If
it’s tabular data—that’s any content that logically fits in a row/column structure—use a
table, because although it’s possible to make a div-based layout look like a table, the rela-
tionships between the data and headers are completely lost, making it all but useless if CSS
is removed. Refer to Chapter 3 for more information on tables.

Footers

Which of the following two examples is preferable:

<div id="footer"><p>© 2006 Paul Haine</p></div>
<p id="footer">© 2006 Paul Haine</p>

Is the first example a case of divitis or not? Possibly—this is one of those borderline cases
that can cause small holy wars between designers. The answer is, I think, yes it is, and no it
isn’t, and even if it is then it’s only a mild case anyway.

The first example appears to be using an extraneous <div>. Because the entire content is
also encapsulated in a <p>, you don’t really need the <div> as well. But isn’t the <div>
marking out a distinct section? Yes, it is, but if any adjacent sections above or below the
footer (if, in fact, you’d have any sections below a footer) are contained in their own

Eric Meyer created a tableless calendar as a demonstration of how a div-based calendar
created far more inefficient markup than one of the table-based variety, though he also
noted that it was a good way to learn how the CSS float property operated. See http://
archivist.incutio.com/viewlist/css-discuss/35082 for more information.

RECOGNIZING SEMANTICS

169

6

7656Ch06.qxp 11/16/06 11:28 AM Page 169

<div>, then the existence of a distinct footer section can be implied. So, it’s an unneces-
sary <div>.

However, it may be worth thinking ahead. If you ever need to include a second paragraph
in your footer, then the second example will no longer work, and you’ll need to include a
containing <div>, so if that may be possible, then why not include it just in case?

Avoiding span-mania
A similar condition to divitis exists where is overused or misused, and this is some-
times known as span-mania, spanitis, and other variations on the theme. It’s generally not
as prevalent as divitis, but it does happen, and for the same reasons. As with <div>,
though, using is not necessarily a bad thing—you’re not automatically docked ten
web-standards points per —so long as it’s used with intelligence and purpose.

Avoiding overuse is, again, simply a matter of stopping to think about the meaning of your
content and identifying a possible alternative tag. For instance, remember this example
from Chapter 1?

<p>The first ➥

two words of this paragraph can now be styled differently.</p>

Let’s think about this some more. Does this really need to be a ? There’s no CSS
available that can target an arbitrary number of words in a paragraph, so there needs to be
something there to hook our style onto. We need to think about what we’re trying to
achieve by styling those first two words differently from the rest of the text. Are we trying
to emphasize those words? If that’s the case, we should probably be using either or
:

<p><em class="leadingWords">The first ➥

two words of this paragraph can now be styled differently.</p>

This can still be styled in any way you like, just as the could be, for instance (see
Figure 6-13):

em.leadingWords { font-style: normal; font-variant: small-caps; }

Figure 6-13. The two leading words are now both visually and semantically emphasized.

It’s a judgment call—decide what you’re trying to achieve and then think about if there’s a
more meaningful tag available. In the preceding example, you might consider this to be a
purely presentational effect, in which case it’s better to remain with the .

Another example I’ve seen in the wild is markup like this:

All required form fields
need to be completed

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

170

7656Ch06.qxp 11/16/06 11:28 AM Page 170

Although the author-defined semantics present in the class name are fine, there’s a better
alternative to using a :

<strong class="error">All required form fields
need to be completed

The author-defined semantics are now completed by the tag, which indicates
that the content should be strongly emphasized. You don’t actually need the class name,
but providing it allows you to style error messages in a different way from any other
strongly emphasized content (e.g., coloring the text red).

There’s also the example mentioned in Chapter 2: when marking up text that’s in an alter-
native language, it may be preferable to use the <i> element with a lang attribute instead
of a with a lang attribute and a class attribute for styling purposes.

A quick aside; if you are marking up text in a foreign language, then you may also find of
use the <bdo> element (that’s “bidirectional override”) and the dir attribute, which con-
trol the direction of a text fragment and a block of text, respectively, and are best used
when marking up Hebrew and other languages that are written from right to left instead
of the Western left to right. Use <bdo> when the word or phrase is inline within a block of
text written in a right-to-left language (and I’m afraid I don’t know any Hebrew, so please
excuse my English-language examples; they’re nonsensical but they help get the point
across):

<p>When rendered by a browser, <bdo dir="rtl">these words</bdo>➥

will appear as 'sdrow eseht'</p>

This markup renders as shown in Figure 6-14.

Figure 6-14. The words “these words” have been reversed by the <bdo> element.

If an entire block is in a right-to-left language, use the dir attribute (with a value of rtl for
right-to-left languages and ltr for left-to-right languages) on the container tag:

<p dir="rtl">When rendered by a browser, this will appear ➥

aligned to the right.</p>
<p>But this paragraph lacks a <code>dir</code> attribute. </p>

This markup renders as shown in Figure 6-15.

Figure 6-15. The entire first paragraph is now formatted to be read right-to-left instead of the
default left-to-right.

In this example, the entire first paragraph is now aligned to the right, and the punctuation
has also moved, but the text remains in the order it is written in the source markup, the

RECOGNIZING SEMANTICS

171

6

7656Ch06.qxp 11/16/06 11:28 AM Page 171

assumption being that if an entire block of text is set with a dir attribute, then it has been
written to be readable in that direction already. The second paragraph is untreated and is
there for comparison only.

Finally, don’t forget about all the different phrase elements discussed in Chapter 2: elements
for citations, keyboard input, defining instances of terms, and so on. Remembering what
inline elements are available to you can be a valuable aid in avoiding unnecessary spans.

You’ll probably have seen the effect shown in Figure 6-16 before, if not on the Web then
at least in print.

Figure 6-16. A drop cap, where the initial letter of a sentence is visually enhanced

Figure 6-16 shows a drop cap, where the first letter of a paragraph has been styled to
appear much larger than the rest of the text.

It’s a purely visual effect, so you might think that this is an acceptable place to use a
:

<p>This paragraph has a drop cap.</p>

Here’s the CSS:

span.dropcap {
float:left;
display:block;
font-size:300%;
line-height:100%;
padding-right: 0.1em;

}

This is a valid use of a , but CSS2 provides us with a less invasive alternative. Remove
the from your markup and change your CSS to this:

p:first-letter {

A detailed look at how you can calculate the appropriate size of your drop cap in rela-
tion to the size of your text can be found at www.citrusmoon.net/dropcaps.html.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

172

7656Ch06.qxp 11/16/06 11:28 AM Page 172

:first-letter is a pseudo-element and targets the first letter of a paragraph (or any
other element you apply it to. But watch out, as browsers can be a little quirky in how they
react to this. For instance, if you use it on a list element, some browsers will include the
bullet character along with the first letter).

Intentional spans

Sometimes, though, what appears to be span-mania is actually markup with a purpose—
such as when you’re describing multiple types of telephone numbers in the hCard micro-
format discussed in the previous chapter. Two good rules of thumb to determine whether
you should use a are as follows:

Are you using the markup purely as a hook to apply decorative styles to?

Can the meaning of the content be described only with a class name?

If the answer to either of these questions is yes, then use a . Otherwise, investigate
other options—it’s likely that there’s a more appropriate alternative.

An example of using span markup for purely presentational reasons is using them to create
rounded corners in flexible boxes. If your content is of a fixed width, then you can usually
just include an image of the same width with both left and right corners included, but if
your content is flexible (or elastic, or fluid), then it’s trickier to achieve. A common solution
is to include one per corner and include each corner as a background image. You
can usually recognize the technique by markup similar to this:

<div><p>Lorem ➥

ipsum...</p></div>

Mmm, lovely. Once those spans are in place, you apply a different background image to
each one:

div {background: #a7a7a7;}
p {padding: 10px;}
div span { background: url(corner_tr.gif) top right ➥

no-repeat; display: block; }
div span span { background: url(corner_br.gif) bottom right ➥

no-repeat; }
div span span span { background: url(corner_bl.gif) bottom left➥

no-repeat; }
div p span span span span { background: url(corner_tl.gif) top left ➥

no-repeat; }

Figure 6-17 shows the result.

RECOGNIZING SEMANTICS

173

6

7656Ch06.qxp 11/16/06 11:28 AM Page 173

Figure 6-17. A paragraph with rounded corners

If the paragraph is not of a fixed width or height, then the corners stay in the correct
places even when the size and shape of the container changes, as shown in Figure 6-18.

If you want to have an image in each corner of your block and have the block be fluid in
both the X and Y axes, then at the moment this is more or less the only way you can do it.
Although the CSS3 draft specification allows you to include any number of background
images on a single element, the browser support for this is minimal, with only Safari cur-
rently offering support (see http://htmlmastery.com/s/css3bg/ for a demonstration of
this).

You can clean up your markup a bit by using JavaScript to dynamically insert the
tags. This means people without scripting enabled won’t see your corners, but that’s prob-
ably OK if the corners are just decorative.

Another good use of seemingly superfluous spans can be found in Andy Budd’s remote
rollovers technique, which allows you to hover over one element and cause an image
change elsewhere on the page. Full details of this technique can be found in Andy’s CSS
Mastery: Advanced Web Standards Solutions (friends of ED, ISBN: 1-59059-614-5).

Roger Johansson’s article “Transparent custom corners and borders” (http://
htmlmastery.com/s/customcorners) provides a comprehensive script solu-
tion for this issue.

Figure 6-18.
The corners are persistent,
no matter the size of the container.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

174

7656Ch06.qxp 11/16/06 11:28 AM Page 174

Avoiding classitis
Classitis is a similar condition to divitis, except it occurs when the web designer has over-
used the class attribute instead of the <div> tag. Classitis can be avoided through a bet-
ter understanding of CSS selectors. A typical example of classitis is markup such as this:

<ul id="nav">
<li class="navlist">Link
<li class="navlist">Link 2
<li class="navlist">Link 3
<li class="navlist">Link 4

In the style sheet, both .navlist and .navlink are then independently styled, but the fact
is that not a single one of those classes is necessary, as you can target both the list items
and the anchors with descendent selectors (i.e., selectors that target the descendents of
a particular element, or hierarchy of elements):

ul#nav li a { /* your CSS styles here */ }

This CSS looks for any <a> that is a descendent of an , which is in turn a descendent
of a element, with an id value of nav (so this is actually an example of an ID selector
as well as a descendent selector). Targeting elements in such a way is beneficial for two
reasons: it cleans up your markup, making it more readable, lighter, and easier to maintain,
and it does the same for your CSS.

But, again, using class attributes is not intrinsically bad, and it can often be your only
option when targeting an element, particularly because of Internet Explorer 6’s lack of
support for advanced CSS2 selectors. For instance, the example shown in Figure 6-19 is
similar to the “leadingWords” example from earlier.

Figure 6-19. The leading paragraph is visually emphasized.

The first paragraph is serving as an introduction to the rest of the article, and it’s similar to
a style you’ll see in magazines and newspapers, with the introductory text much larger
than the rest of the copy. We can style this paragraph in a number of ways. For example,
we could use a CSS2 adjacent sibling selector:

RECOGNIZING SEMANTICS

175

6

7656Ch06.qxp 11/16/06 11:28 AM Page 175

h3+p { font-size: 150%; font-style: italic;}

This targets any <p> that directly follows an <h3> in the markup:

<h3>Title</h3>
<p>First paragraph</p> <-- this paragraph is being targeted
<p>Second paragraph>

But because Internet Explorer 6 and below don’t support adjacent sibling selectors
(Internet Explorer 7 does), if this effect is important, we must find another way. And really,
the only other way is to add a class name to that paragraph:

<h3>Title</h3>
<p class="intro">First paragraph</p>
<p>Second paragraph>

Now, what about the semantics? Like the example from earlier on, aren’t we trying
to emphasize that first paragraph? So, could we slip an in there?

<h3>Title</h3>
<p class="intro">First paragraph</p>
<p>Second paragraph>

The paragraph with the class of intro has now been emphasized. Here’s the correspon-
ding CSS:

.intro em { font-size: 150%; font-style: italic; }

This way, the intended emphasizing is present in both the CSS and the markup—but
remember to only use an if you actually intend semantic emphasis, not just visual
emphasis (which could actually be the same thing).

I mentioned the :first-letter pseudo-element earlier on. There also exists a :first-line
pseudo-element, which is used in the same way as :first-letter, but targets the first line
of the element (and recalculates what the first line is on the fly, so when you resize your
content, the applied effect only ever affects the first line):

p:first-line { font-weight: bold; }

Figure 6-20 shows the result.

Figure 6-20. The :first-line pseudo-element is being used to embolden the first line of the
paragraph.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

176

7656Ch06.qxp 11/16/06 11:28 AM Page 176

Figure 6-21 shows this effect again, but in a narrower browser window.

Using the :first-letter and :first-line pseudo-elements doesn’t involve you modify-
ing your markup in any way, and although you do lose support in older browsers, they’ll
still be able to display your content. However, you may not want to apply these pseudo-
elements to every paragraph, so you can still target a paragraph that has a specific class or
ID value:

<p class="intro">First paragraph</p>

Here’s the CSS:

p.intro:first-letter { /* your styles here */ }

Semantic navigation
Navigation on a website can come in many different shapes and sizes—horizontally, in the
form of tabs, vertically as a nested list of expanding and collapsing categories, breadcrumb
trails, drop-down menus, and so on. Regardless of how it’s presented, though, it’s almost
always the case that navigation can be marked up as an ordered or unordered list. Let’s
look at a few examples of this, starting with breadcrumb trails.

A breadcrumb trail is a navigational aid where links are provided that lead you from the
current page back up to the root of the website, through any preceding categories, as
shown in Figure 6-22.

Figure 6-22. A typical breadcrumb trail

Markup for a breadcrumb trail will often look something like this:

<p>Home > ➥

Archives > Movies➥

> Shaun of the Dead</p>

Figure 6-21.
The paragraph has been resized and
what constitutes “the first line” has
been automatically recalculated.

RECOGNIZING SEMANTICS

177

6

7656Ch06.qxp 11/16/06 11:28 AM Page 177

But hold on—isn’t this, basically, just a list? So shouldn’t we mark it up as one? Yes! Let’s
start with the markup:

Home
Archives
Movies
Shaun of the Dead

Notice that in both examples, the final option isn’t hyperlinked. This is intentional, as links
that link to the same page that they’re on can cause mild confusion as people click them
and find they haven’t moved from the page they are on.

I’m using an ordered list because these links do have a clear order. If you reordered them,
then they would no longer describe a hierarchical trail, and that’s the acid test for decid-
ing upon whether you should use an ordered or unordered list. If you can reorder the list
items and the list still makes sense, then it’s probably an unordered list; if the list no longer
makes sense, then it should be marked up as an ordered list.

Also, I’ve removed the > entities from the markup. These entities create the greater-
than symbol (>), but a better, often-overlooked entity available to use is →
(or →, which is the numerical equivalent), which creates a right-pointing arrow (→)
and is more meaningful in this context. Using the greater-than symbol in place of an actual
arrow is semantically dubious.

I’ve removed the entities because they’re there only for
decoration, and if we keep them directly within the
markup, then screen readers will read them out—so our
first example will most likely be read out as “Home
greater archives greater movies greater Shaun of the
Dead.” Which . . . OK, that sort of makes sense if you twist
your brain around it a little, but it’s not ideal.3 Instead,

we’ll include our decorations with CSS. At the moment, our breadcrumb trail will look like
Figure 6-23.

Let’s first deal with the list:

ol {
list-style-type: none;

}

This markup removes the numbering from the list. In a production environment, you’d
probably also include some specific margins, padding, and font styles, but this is fine for
our purposes.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

178

3. Have a listen to the various samples of how the JAWS screen reader reads out different characters
in an article entitled “The Sound of the Accessible Title Tag Separator” at Standards Schmandards
(http://htmlmastery.com/s/sounds). It might put you off of using the right double angle bracket (»)
ever again.

Figure 6-23.
A breadcrumb

trail in its unstyled
list form

7656Ch06.qxp 11/16/06 11:28 AM Page 178

Next, we tweak the list items a little:

li {
display: inline;
padding-left: 0.5em;

}

This causes the list items to display horizontally, and the padding will just make things look
a little nicer. So far, our breadcrumb trail looks like Figure 6-24.

Figure 6-24. The breadcrumb trail is now more trail-like.

Now, there are two ways to include our arrows. The first way we’ll look at uses the CSS
background-image property, which will work in all current CSS-supporting browsers
(Internet Explorer included), and the second uses the CSS2 content property, which is
used in conjunction with the :after pseudo-element and not supported by any current
version of Internet Explorer (version 7 included).

The first solution involves more effort on your part, as you’ll have to create an arrow
image in your graphics application of choice. Once you’ve done that, it’s simply a matter
of including it as a background image on your list items:

li {
background: url(arrow.gif) right no-repeat;
padding-right: 20px;

}

Which gives us the result shown in Figure 6-25.

Figure 6-25. A breadcrumb trail using background images for the decorative arrows—but what’s
that last arrow pointing at?

We’ll have to override the background image on the closing , so give it an id of
last-item and add this to the CSS:

li#last-item {
background: none;

}

And we’re done. (See Figure 6-26.)

Figure 6-26. The completed breadcrumb trail

RECOGNIZING SEMANTICS

179

6

7656Ch06.qxp 11/16/06 11:28 AM Page 179

The second method, using CSS-generated content, is easier and neater, but it lacks support
from Internet Explorer, and screen readers may read out generated content. The markup
is almost the same as in the previous solution, but instead of adding a background image
in the CSS, we add this:

li:after {
content: '→'

}

Then we just add a little padding to the right side of the <a>:

a {
padding-right: 0.5em;

}

Now, in modern browsers, the result is as shown in Figure 6-27.

Figure 6-27. A breadcrumb trail using CSS generated content to insert the arrow figure

Finally, add an ID value of last-item to the final , and add to your CSS:

li#last-item:after {
content: '';

}

We’re all done! Figure 6-28 shows the result.

Figure 6-28. The finished trail

The same principles can be applied to horizontal menus, such as the one shown in Figure 6-29.

Figure 6-29. A collection of links presented horizontally

The markup for this type of menu will often be in the form of a paragraph:

<p>Home | About ➥

| Contact </p>

In case it’s not clear: the content property is simply being passed an
empty value. There’s nothing between those single quotes.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

180

7656Ch06.qxp 11/16/06 11:28 AM Page 180

Again, though—this is a list. It’s a small list of only three items, but a list nonetheless:

Home
About
Contact

As before, we can lose the pipe character (|) separator (which a screen reader can read
out as “vertical bar,” so the full list would be read out as “Home vertical bar about vertical
bar contact,” which is not ideal), and this time we can just use the CSS border property to
re-create it. First of all, we lose the list bullet:

ul {
list-style-type: none;

}

Then we get all the list items up onto the same line, add a bit of padding and margin, and
add a border to act as a visual separator:

li {
border-right: 1px solid;
display: inline;
padding-right: 0.5em;
margin-right: 0.5em;

}

And the finished result is shown in Figure 6-30. It’s not identical to the paragraph version,
but it could be styled further.

Figure 6-30. A horizontal list of links, marked up as a list but presented horizontally

If you don’t want the closing link to have a border, just add an id to the last list item again
and add border: 0; to your CSS.

The importance of validity
One of the reasons people can suffer from divitis and classitis is because they can write
that sort of markup and still have the W3C validator give them a shiny “Valid XHTML!”
badge at the end of it. It’s important to understand that validation does not equal best
practice—validating is commendable, in the same way that writing with perfect grammar
is commendable, but being grammatically correct doesn’t necessarily mean that the mean-
ing of your text or speech is clear.

When you view your pages in a web browser, the browser doesn’t actually know if you’ve
written valid (X)HTML or not. You may have declared with your doctype that you’re writing

RECOGNIZING SEMANTICS

181

6

7656Ch06.qxp 11/16/06 11:28 AM Page 181

to the XHTML 1.0 specification, but the web browser isn’t downloading a copy of the DTD
and checking up on you. All that happens when a doctype is present is that the browser
switches to standards mode,4 and when the document is validated it informs the validator
what DTD it needs to be checking against. This is why you can write to an XHTML standard
but then chuck in an HTML 3.2 tag (written in uppercase) or attribute (with an unquoted
value) and find that it still works without complaint—support for these older standards and
markup methodologies is hard-coded into the browser.

Does this mean that we should question the importance of creating (and maintaining) a
valid document? After all, if validating doesn’t guarantee intelligent use of the markup,
what good is it?

We should also consider those that have been successful with invalid markup, such as
Macromedia (now Adobe) with their Flash product. The standard way to include Flash
movies on your page is invalid, as it partly relies upon the <embed> tag and some other
nonstandard markup. It’s invalid, but it works, and it has worked so well that 80–90% of
web browsers now have the ability to view Flash media. Invalid markup has not, it seems,
harmed Flash’s market penetration.

So, again, what good is it?

In my mind, there are two basic types of validation error:

Structural failures, such as a missing </div> (or one too many </div>s), which
can cause massive rendering problems on your page

Nonstructural failures, such as an unencoded ampersand, a missing required
attribute (such as an image alt attribute), or an unquoted attribute value, the pres-
ence of which are unlikely to cause any noticeable problems, because a browser
understands how to read an unquoted attribute value or how to parse an unen-
coded ampersand, irrespective of what doctype you’re writing to

But you still need to be able to spot the difference between a structural failure and a non-
structural failure, and the best way to do that is to avoid both types altogether. If you’ve
forgotten to close a <div>, but you’re also missing a few dozen alt attributes and a few

If you’re serving your XHTML with a MIME type of applica-
tion/xhtml+xml, then some of these nonstructural failures
will cause your pages to break, displaying an XML parse error
instead of any content, in addition to all of the structural fail-
ures. However, this is still not about checking for validity—it’s
actually only breaking if the markup is not well-formed, so
you can still include attributes and tags not part of the
XHTML specification, as long as the attribute values are
quoted and the tags are all nested and closed correctly.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

182

4. Or almost-standards mode, as discussed in Chapter 3.

7656Ch06.qxp 11/16/06 11:28 AM Page 182

hundred unencoded ampersands in your URLs, the error message highlighting the problem
with the <div> is likely to get lost amid all of the other errors. By aiming for strict validation,
you make it far easier to spot structural problems, particularly as one failure earlier in the
document can trigger several other failures further down the line.

Furthermore, by aiming for strict validation, you help to future-proof your website. At the
moment (in late 2006/early 2007) we can look at the browser situation and say, “Yes, I can
get away with a lot of invalid markup.” But we don’t always know what’s coming—perhaps
Internet Explorer 8 or Firefox 3 will be far less forgiving of our errors, or browsers will
begin actually taking note of what DTD we’re using instead of using it only as a rendering
mode trigger. Perhaps serving content with a MIME type of application/xhtml+xml, with
its draconian error-handling, will become much more common. Perhaps a brand-new
browser—maybe a mobile phone browser, or a browser on an as yet unimagined device—
will come along and choke on invalid markup. We don’t really know.

But realistically, strict validation is not always easy. In a business environment with third-
party ad servers spitting out advertisements marked up as tables with lots of font tags and
crufty URLs, or clunky CMSs that generate twentieth-century markup but are too expen-
sive and important to rebuild or replace, or even a blog environment with open comments
(where you have limited control over what the commenter decides to write), it may not
even be possible.

So it’s something to aim for, and I think it very much should be aimed for—but if it can’t
be managed, and for good reason, try not to judge yourself or others too harshly because
of it.

Summary
So now you’ve seen that there are more opportunities to create semantically and struc-
turally sound websites than you might have thought. Despite the limited number of
(X)HTML tags available, many page elements can be broken down into simple forms: lists,
paragraphs, and so on. It’s often just a case of stepping back from your content and think-
ing about what it really is.

RECOGNIZING SEMANTICS

183

6

7656Ch06.qxp 11/16/06 11:28 AM Page 183

7656Ch07.qxp 11/16/06 11:29 AM Page 184

7 LOOKING AHEAD: XHTML 2.0 AND
WEB APPLICATIONS 1.0

7656Ch07.qxp 11/16/06 11:29 AM Page 185

So, you’ve now seen covered every element from the HTML 4.01 and XHTML 1.0 specifica-
tions (with the exception of frame markup, which will be covered in Appendix B), from the
obscure—<bdo> and <optgroup>—to the common—<p> and <h1>. You’ve looked at tables
and found that they’re just as useful today as they always have been, when used correctly,
and you’ve looked at forms, and how giving them a bit of semantic structure can notably
enhance their usability and accessibility. You’ve taken in microformats and the Semantic
Web, and looked at a few common page elements and how to express them more seman-
tically, avoiding divitis and classitis as you go.

To finish things off, I’m going to give you a brief look at future (X)HTML technologies, the
successors to XHTML 1.1 and HTML 4.01. They are, at the time of writing, still in the draft
stage, and it is likely to be a while yet before they can be used in a production environ-
ment—but then again, this is the Internet. The Internet moves pretty fast, and as a great
man once (more or less) said, if you don’t stop and look around once in a while, you could
miss it.

At the time of writing, the successor to XHTML 1.1 is XHTML 2.0—as far as the W3C is con-
cerned. Complicating the issue somewhat is Web Applications 1.0 and Web Forms 2.0, also
collectively known as HTML 5. As both of these technologies are still being worked upon,
what I’m about to write is entirely subject to change, so I won’t go into too much depth for
that reason. It’s unlikely you’ll be using either in any serious way for some time, but it’s still
nice to know what’s happening so that when the time comes to take sides and have fiery,
impassioned debates about XForms versus Web Forms or the <hr> element versus the
<separator> element, you’ll be ahead of the game.

First, in the blue corner, XHTML 2.0.

XHTML 2.0
Whereas the purpose of XHTML 1.0 was to reformulate HTML into XML, the purpose of
XHTML 2.0 (“XHTML 2.0, W3C Working Draft,” www.w3.org/TR/xhtml2/) is to progress from
that point, addressing the problems of HTML as a markup language, making it easier to
write with greater accessibility and device independence, improving internationalization,
and supplying enhanced forms and more meaningful semantics. For example, the notion of
six levels of headings (<h1> through <h6>) has been supplanted by a new <section> ele-
ment (a container for dividing up content, much like a <div>) and any number of <h>
elements,1 where the document structure is inferred from the placement and hierarchy of
these sections and headings. So, where you may be used to this with current (X)HTML:

<div>
<h1>Page Title</h1>
<h2>Page Slogan</h2>

</div>

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

186

1. The heading tags (<h1> through <h6>) will still be supported to help with the transition between
XHTML 1 and 2.

7656Ch07.qxp 11/16/06 11:29 AM Page 186

<div>
<h3>Article Title</h3>
...
<h4>Subheading</h4>

</div>

in XHTML 2, you would do this:

<section>
<h>Page Title</h>
<h>Page Slogan</h>

</section>
<section>

<h>Article Title</h>
...
<h>Subheading</h>

</section>

Also of note is that the src attribute is no longer limited to images and scripts; in XHTML
2.0, it can be applied to any element, negating the need for alt attributes or CSS-based
image replacement techniques. So, where you may once have done this:

<h1></h1>

in XHTML 2.0, you could simply do this:

<h src="/foo.jpg">Page Title</h>

If, for whatever reason, the image is not available or the visitor to the site has disabled
images, the text within the <h> tags will display instead.2

Other new tags and attributes in XHTML 2.0

XHTML 2.0 will also be bringing to the table a few new tags and attributes for us to play
with, such as the <blockcode> tag (a combination of <pre> and <code>), a new list tag for
navigation lists (the <nl> tag), and the <separator> and <l> elements (that’s an “l” for
“line”), replacing <hr> and
, respectively.

Accessibility is also made marginally simpler with the new nextfocus and prevfocus
attributes (replacing the tabindex attribute and negating the need to maintain your own
hard-coded numbering of tabindexes), and the role attribute to describe to screen read-
ers the purpose of a particular element. Also new is the ability to better specify metadata
with the property attribute, used like this:

<h property="title">Page Title</h>

LOOKING AHEAD: XHTML 2.0 AND WEB APPLICATIONS 1.0

187

7

2. This renders the element obsolete, but as with the six original header tags, it will be included in
the XHTML 2.0 specification for backward compatibility.

7656Ch07.qxp 11/16/06 11:29 AM Page 187

This means you would not have to write out the title of the document twice (once in the
<title> tags and again within the document)—the browser could extrapolate from the
document what the title should be.

XForms

There’s a lot to be said about XForms, the technology that aims to replace the old
(X)HTML forms and form controls that you will be familiar with—enough to write a book
on, in fact. Designed from the ground up to overcome many of the problems associated
with existing forms, XForms promises exciting things such as device independence, client-
side validation of form fields (without scripting or reloading the page), a simpler construc-
tion process for the web author, and built-in integration with XML (“XForms 1.0 Frequently
Asked Questions,” www.w3.org/MarkUp/Forms/2003/xforms-faq.html).

A major difference between (X)HTML forms and XForms is that XForms specifies what
form controls should do rather than how they should look. This shouldn’t be an unknown
concept—it’s part of what this very book is about; thinking about how things should act
and what they mean rather than their appearance. So, for instance, where an (X)HTML
form might have a <select> element for a multiple-choice menu and an <input> element
with a type value of radio for a single-choice option, an XForm would have the <select>
element and the <select1> elements, with the appearance left to the display device or the
author’s stylesheet.

For example, where you may have written something like this:

Chicken or beef:
<input type="radio" name="food" value="chicken" /> Chicken
<input type="radio" name="food" value="beef" /> Beef

in an XForm, you would write this:

<select1 ref="food">
<label>Chicken or beef:</label>
<item>
<label>Chicken></label><value>chicken</value>

</item>
<item>
<label>Beef</label><value>beef</value>

</item>
</select1>

Notice there are a few new elements and attributes: the ref attribute replaces the name
attribute, while each possible option is represented by an <item> element. The <item>
element contains both a <label> (which would act the same as the (X)HTML equivalent,
except there’s no need for the for attribute) and a <value>, which would most likely be
invisible by default.

How this would render depends on what device is doing the rendering; it might not be
rendered as radio buttons—it could render as radio buttons, or as a drop-down list, or a
fixed menu. The author can provide a suggestion as to how the markup should render by

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

188

7656Ch07.qxp 11/16/06 11:29 AM Page 188

including an appearance attribute on <select1>, with possible values of full, compact, or
minimal, but ultimately the decision is left up to the rendering device; if it decides there’s
not enough screen space for a full appearance, it might select the minimal alternative
instead.

If you wanted to allow for more than one selection—maybe your users like chicken and
beef—you just replace <select1> with <select>, and everything just said remains the same.

Other changes from (X)HTML forms include the following:

The <form> element is replaced by the <model> element.

The action and method attributes now apply to a new <submission> element.

<legend> is retired in favor of <label>.

<fieldset> is replaced by <group>.

<optgroup> is replaced by <choices>.

File inputs are now included with an <upload> element.

Password inputs are now included with the charmingly named <secret> element.

There’s more; entirely new to XForms are the <range> and <output> elements. <range> is
similar to the proprietary range input type described in Chapter 4, with user agents possi-
bly rendering this as a slider:

<range start="1" end="100" step="10" />

The <output> element allows users to preview the values they’re submitting and can also
be used to calculate values—all without anything being submitted back to the server. For
instance:

<output value="totalprice - discount" />

would display the sum of a previous form control named totalprice minus the value of
another form control known as discount, allowing the user to see changes on the fly,
without Ajax or any other scripting techniques.

A complete description of XForms is beyond the scope of this book, particularly as the
specification has not yet been finalized, so I suggest reading “XForms for HTML Authors”
by Steve Pemberton (www.w3.org/MarkUp/Forms/2003/xforms-for-html-authors.html)
for a detailed tutorial on the subject, and also have a look at “XForms—The Next
Generation of Web Forms” (www.w3.org/MarkUp/Forms/).

Preparing for XHTML 2.0

As the XHTML 2.0 specification has not been finalized and major browsers do not yet sup-
port any of it, using it in a real website is not feasible. According to the W3C’s roadmap, it
is not due to become an official W3C recommendation until at least 2007, and from there
it must still go through several additional phases before it can be used in the field.
Nevertheless, if you want to be ahead of the game, there are still several ways you can
start preparing:

LOOKING AHEAD: XHTML 2.0 AND WEB APPLICATIONS 1.0

189

7

7656Ch07.qxp 11/16/06 11:29 AM Page 189

Go all the way in separating your presentational and behavioral markup from your
content. Make sure you’re writing strict, well-formed XHTML 1.1.

Start including metadata within your pages by using microformats, e.g., use hCard
for marking up your contact details.

Start serving your XHTML with the MIME type of application/xhtml+xml to
prepare you for the extra strictness of XML—XHTML 2.0 will require you to do this.

Learn more about XML and about XForms.

Start experimenting with XHTML 2.0 with the X-Smiles browser (www.xsmiles.org/),
which offers support for both XHTML 2.0 and XForms, among other technologies.

Next, in the green corner, Web Applications 1.0.

Web Applications 1.0
So, if the W3C is all about XHTML, who is behind Web Applications? Step forward, Web
Hypertext Application Technology Working Group (WHATWG to its friends). WHATWG is a
“loose unofficial collaboration of web browser manufacturers [Apple, Mozilla, and Opera are
all involved] and interested parties who wish to develop new technologies designed to allow
authors to write and deploy applications over the World Wide Web” (www.whatwg.org/).

Web Applications 1.0 is designed to be backwardly compatible with both HTML 4.01 and
XHTML 1.0. The objective, as just stated, is to allow easier development of web applica-
tions by solving some of the problems in existing versions of (X)HTML (such as the limited
form controls). As with XHTML 2.0, work on Web Applications is still in progress and sub-
ject to change.

New tags and attributes in Web Applications 1.0

A criticism that WHATWG has of XHTML 2.0 is that it is stuck using the same “document”
metaphor of previous versions of HTML—suitable for literary works or technical manuals,
but less suitable for, say, auction sites, search engines, and personal homepages. Thus, Web
Applications brings us several new section elements with self-explanatory meanings—
<section>, <nav>, <article>, <aside>, <header>, and <footer>.

At the time of writing, the Web Applications 1.0 specification (www.whatwg.org/specs/
web-apps/current-work/) also includes a new <t> tag for indicating the time, a <meter>
tag for representing scalar measurement within a known range (such as hard disk usage),
and a <progress> tag for indicating the competition progress of a task. The <table> tag
and all associated tags are supplemented by the new, more flexible <datagrid> tag.

A Web Application is defined by WHATWG as an application accessed over the Web via
a web browser, such as eBay or Amazon.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

190

7656Ch07.qxp 11/16/06 11:29 AM Page 190

Also included is the <canvas> element, originally introduced by Apple in Safari for the
implementation of the Mac OSX Dashboard but now also found in Mozilla (and other
browsers using the same engine) and Opera 9. It is essentially an image element that sup-
ports programmatic drawing (http://weblogs.mozillazine.org/hyatt/archives/
2004_07.html#005913).

Web Forms 2.0

The scope of Web Forms 2.0 is not as ambitious as that of XForms, focusing on improving
the form controls available in the browser. Included in Web Forms is client-side validation,
control over auto-completion, an autofocus attribute to control which form element
gains keyboard focus when the page has loaded, improvements on file upload controls
(such as specifying the expected file type and controls on the file size), new types of input
controls such as datetime, number, range, email, url, and more (some of which have
already gained support—see Chapter 4).

Preparing for Web Applications 1.0

As with XHTML 2.0, the Web Applications specification is still very much a work in
progress, and it’s hard to predict when the browser support for it will be at such a level to
allow for practical use rather than theoretical discussion. As noted previously, though, the
<canvas> element is already implemented in Safari, Mozilla, and Opera 9, and Opera 9 also
includes some support for Web Forms 2.0, so the support is trickling in despite the advice
of the WHATWG to avoid implementing these features until the specifications have been
finalized. If you wish to try and prepare yourself, simply continue what you’re doing—this
suite of technologies is intended to be backwardly compatible with both HTML 4.01 and
XHTML 1.0, so adoption should be simpler than that of XHTML 2.0.

Summary
Should you be worried about any of this? At the moment, I would describe the two pre-
ceding technologies as “points of interest.” They’re certainly going to go through many
revisions before being completed, and then the decision on whether to use them should
be based on a need to use them, and whether your audience is actually using a browsing
device capable of displaying these new toys.

Also, remember that browsers are probably not going to simply stop understanding any pre-
vious version of (X)HTML when these new versions are available, so even if you don’t find
what’s to come appealing, you can still use what you already know. Furthermore, the issue of
Internet Explorer will continue to be a factor—with versions 5 through 6 making up roughly
80–90% of the browser usage share, using any new features from either new technologies
could prove problematic. However, although Internet Explorer 7 will not be implementing of
these new features, Microsoft has suggested that future updates to its browser will not be as
slow to arrive as version 7 was, so by the time XHTML 2.0 and Web Applications 1.0 are ready
to use, the browser support may be there as well—fingers crossed.

LOOKING AHEAD: XHTML 2.0 AND WEB APPLICATIONS 1.0

191

7

7656Ch07.qxp 11/16/06 11:29 AM Page 191

7656AppA.qxp 11/16/06 11:27 AM Page 192

APPENDIX A XHTML AS XML

7656AppA.qxp 11/16/06 11:27 AM Page 193

When we all started writing XHTML instead of HTML, it was the cool new thing: it would
replace HTML, browser’s would “accord it special treatment,” we would be able to work
easily with other XML applications, and it would be more accessible and work better on a
wider variety of devices and browsers.

A few years on, and that’s mostly turned out to be incorrect, or related more to the style
of authoring than the markup language used. Because the truth is that XHTML sent across
the tubes with a MIME type of text/html is HTML, or at least is treated like HTML.
Browsers accord it no special treatment, you can’t include XML applications in it, and it’s
no more or less accessible than HTML.

There are no inherent advantages in serving XHTML as HTML. There aren’t really any
disadvantages, either; if there were, we’d have heard about it by now, given the large
number of people now authoring in XHTML. So, as I said in Chapter 1, use XHTML or use
HTML—just make sure you write it well.

But what if you do want to take advantage of XHTML’s XML features? Well, that’s differ-
ent—XHTML served with a MIME type of application/xhtml+xml (i.e., served as XML)
does have advantages (and some disadvantages as well). In fact, a lot of those advantages
are the advantages we all thought we were getting originally anyway—a draconian strict-
ness and formality in the language, and integration with other XML-based applications.
The disadvantages are that you have to work a bit harder to ensure your markup is flaw-
less, and you lose some browser support, most noticeably the support of Internet Explorer.

The purpose of this appendix is to explain how to serve your XHTML as XML and what you
can expect to gain (and lose) from that. We’ll also take a look at XHTML 1.1 (which is sup-
posed to be served as XML, always), and we’ll take a quick look at Ruby markup.

Serving XHTML as XML
Serving XHTML as XML is actually quite simple and can apply to all of your files or on a
file-by-file basis, depending upon your need. The following examples assume that you’re
running Apache web server.

Let’s imagine for the moment that you want to serve any file with an extension of .xhtml
as XML. You don’t have to call it .xhtml, but this will at least help to differentiate between
your XHTML as XML and your (X)HTML as HTML. All you need to do is open up your
.htaccess file that’s stored in the root of your website (or create one if it doesn’t exist)
and add this line to it:

AddType application/xhtml+xml xhtml

And that’s all you need to do. Easy, eh? You can all go home now if you like.

Ah, but what if you want nonsupportive browsers (Internet Explorer) to be able to view
your pages? Well, that can be done as well, with these lines:

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

194

7656AppA.qxp 11/16/06 11:27 AM Page 194

RewriteEngine On
RewriteBase /
RewriteCond %{HTTP_ACCEPT} !application/xhtml\+xml
RewriteCond %{HTTP_ACCEPT} (text/html|*/*)
RewriteCond %{REQUEST_FILENAME} .*\.xhtml
RewriteRule ^.*$ - "[T=text/html,L]"

What this is doing is simply serving the .xhtml file as HTML (that’s with a MIME type of
text/html) if the browser can’t accept it when it’s sent with a MIME type of
application/xhtml+xml. So, most modern browsers get XML, all others get HTML—best
of both worlds, and it’s acceptable to do this so long as you’re talking about XHTML 1.0
(XHTML 1.1 is treated differently, as discussed further in its own section later in this
appendix).

But what if you don’t want to apply this to all of your files, or don’t have access to your
.htaccess file? Well, you can do it on a per-page basis as well by including a script at the
start of your file that sets the header information. In PHP, this can be as simple as this:

<?php if (strpos($_SERVER['HTTP_ACCEPT'],'application/xhtml+xml'))
{
header('Content-type: application/xhtml+xml; charset=UTF-8');
} else {

header('Content-type: text/html; charset=UTF-8'); }
?>

This is pretty much the same as what was going on in the .htaccess file. If the browser
requesting the file can accept an HTTP header of application/xhtml+xml, that’s how it
will be served; if not, it’ll be served as text/html.

The advantage of this sort of content negotiation is that you get to serve XML to those
browsers that can handle it, but you can still provide the page content to those that can’t.
However, it’s also a disadvantage, as you won’t be able to include any XML-based applica-
tions within your pages, such as MathML (www.w3.org/Math/)—or rather, you can, but a
browser receiving the HTML version won’t know what to do with it, and the meaning will
be lost.

So that your markup is compatible with both XML-capable agents and noncapable agents,
you have to write it in a specific way; some things that are acceptable in XML can cause
problems when HTML parsers attempt to rendering, and vice versa. For instance, although

</br> is legal XML, in HTML some browsers can interpret that as two line breaks, or
there may be other unforeseen side effects. Other guidelines include the following:

Don’t include the XML declaration, as that will switch Internet Explorer to quirks
mode.

If you have an empty container tag, don’t try and make it self-closing (i.e., an empty
<div> should still be closed with a separate </div>, and should not be written as
<div />).

Keep all of your CSS and JavaScript in external files and just reference them with a
<style>, <link>, or <script> tag.

XHTML AS XML

195

A

7656AppA.qxp 11/16/06 11:27 AM Page 195

Avoid line breaks and extraneous whitespace within attribute values.

When specifying the language of an element, use both the HTML lang attribute
and the XML xml:lang attribute (i.e., <i lang="fr" xml:lang="fr">).

For a complete list of guidelines, see the W3C’s “HTML Compatibility Guidelines” (www.w3.
org/TR/xhtml1/#guidelines).

Things to watch out for

So now that you’re serving your content as XML, you need to make sure of a few things.
To begin with, all of your markup must be well formed. Not necessarily valid. You can
place a <p> inside an , and that would be invalid according to any (X)HTML specifica-
tion (as it’s a block-level element within an inline element); but as long as both tags are
closed and they’re not overlapping, then that’s still well-formed markup. Any errors—
unencoded entities, overlapping tags, anything that causes the document to no longer be
well formed—will prevent the page content from appearing at all; all that will be displayed
is an XML parsing error, as shown in Figure A-1.

Figure A-1. An XML parsing error

Any user agent that doesn’t know what to do with XHTML as XML will try and download
the file instead of displaying the contents, as the message in Figure A-2 indicates.

Figure A-2. Internet Explorer tries to download the file instead of displaying it.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

196

7656AppA.qxp 11/16/06 11:27 AM Page 196

If you have any form of commenting facility on your website—most blogs do, for
instance—or anything similar that allows people to instantly post markup to your site, you
run the risk of anybody being able to break the page (or pages) that the comment appears
on. Unless your system can strictly validate the comment input, all it takes is for me to
come along and type <p class="whoops>blah blah</p> with a missing close quote, and
the page will be broken to everybody until you can get online to edit the comment.

CSS selectors will become case sensitive; for example, #Content {font-style: normal;}
will only target an element with an id value of Content, but not content. In any case, it’s
good practice for your CSS selectors to accurately tally up with their markup counterparts,
whatever version of HTML you’re writing.

The <body> will no longer be treated in the special way browsers normally treat it; it will
be treated just as a <div>. This means that any styles that you want to have an effect
across the entire viewport must be applied to <html> instead.

JavaScript works differently. Any JavaScript that relies on the document.write method will
no longer work; this is because this method allows you to insert markup that is not well
formed. Instead, you need to use the document.createElement method. Also, collections
such as document.images, document.links, and document.forms—methods that return
collections of images, links, and forms, respectively—will not work. The document.
getElementsByTagName method must be used in place to retrieve the specific elements
you want. For example:

var elsrc = document.images[0].src;

would be expressed as

var el = document.getElementsByTagName("img")[0];
var elsrc = el.getAttribute("src");

XHTML 1.1
XHTML 1.1 has only a few differences from the strict flavor of XHTML 1.0. The available
elements and attributes are the same, though XHTML 1.1 also includes the Ruby module,
which I’ll talk about more in the section “Ruby” later in this appendix. XHTML 1.1 also has
its own doctype:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

There are no strict, transitional, or frameset varieties here—you’re either writing to the
XHTML 1.1 DTD or you’re not.

XHTML 1.1 must be served with a MIME type of application/xhtml+xml (www.w3.org/TR/
xhtml-media-types/#summary), and if you’re not doing that, then you’re not really using
XHTML 1.1. Yes, you can slap an XHTML 1.1 doctype on your content and that content can
still validate—because validators check that the markup is valid, not the server behavior.

XHTML AS XML

197

A

7656AppA.qxp 11/16/06 11:27 AM Page 197

Browsers will also still display it, but they’re just treating it as HTML, just as they would with
one of the XHTML 1.0 variants, so this is to be expected.

If you’re writing XHTML 1.1 but serving it as text/html, don’t fool yourself into thinking
that you’re being more advanced than if you were writing any other version of (X)HTML—
you’re not. At best, you might be fooling some clients or managers. After all, 1.1 is a higher
number than 1.0, so it must be better, right? Sorry, but no, not really—served as HTML,
XHTML 1.1 is no better or worse, and it becomes again an issue of how well you write it
rather than any inherent strengths and advantages.

Modularization

Anyway, what is XHTML 1.1 and how is it different from XHTML 1.0? Well, the key differ-
ence is that it has been modularized, which is in no way as painful as it sounds when car-
ried out correctly. What this means is that what you know as XHTML has been broken
down into several different modules—for instance, the structure module, which contains
the <body>, <head>, <html> and <title> elements, or the list module, which contains the
<dl>, <dt>, <dd>, , and elements. This then allows people to create subsets
(or supersets) of XHTML using only the modules they need, or to integrate other XML
applications to create what is known as an XHTML Family document type—such as
XHTML 1.1 plus MathML.

XHTML Basic (www.w3.org/TR/xhtml-basic) is an example of this modular form of
XHTML. It’s a stripped-down version of XHTML that’s designed for use on devices that may
have small screens or very low bandwidth such as mobile phones. It’s actually a fairly com-
plete implementation, only leaving out the presentation module (which consists of ,
<big>, <hr>, <i>, <small>, <sub>, <sup>,1 and <tt>) and the frames module,2 but it also
only includes the basic XHTML tables module that not only forbids the nesting of tables,
but also only includes the <caption>, <table>, <td>, <th>, and <tr> elements. The full
tables module contains the same as the basic module but also includes all the other table
elements—<col>, <colgroup>, <tbody>, <thead>, and <tfoot> (it also contains a greater
number of attributes).

There also exists XHTML Mobile Profile, or XHTML-MP for short, which is a super-
set of XHTML Basic developed by the Open Mobile Alliance (an organization
consisting of numerous mobile operators and device and network suppliers),
which is essentially just XHTML Basic with a few presentational elements such as
 and <big> thrown in. It’s unrelated to the W3C, but if you’re interested, I sug-
gest reading the tutorial at http://htmlmastery.com/s/xhtml-mp/. It’s uncertain
to me at this stage whether there’s any real value in developing mobile pages in
XHTML-MP over XHTML Basic with CSS—time will tell.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

198

1. I disagree that <sup> and <sub> are presentational—when used in mathematical and scientific
formulae, they convey as much meaning as they do presentation—but nobody listens to me.

2. For full details on all of the different modules and their contents, see www.w3.org/TR/
xhtml-modularization/abstract_modules.html.

7656AppA.qxp 11/16/06 11:27 AM Page 198

Another example is XHTML-Print (www.w3.org/TR/xhtml-print/), which is only a pro-
posed recommendation at the time of writing but appears to be fairly complete. XHTML-
Print is based on XHTML Basic, but it is designed to provide a simple page description
format where content preservation and reproduction are more important than layout
preservation, in environments where it may not be possible to install specific printer driv-
ers. It includes the script module but not the intrinsic events module, it includes the pres-
entation module but not the frames module, and so on.

There’s also XHTML 2.0, covered in Chapter 7, which uses modules from XForms (also cov-
ered in Chapter 7); XML Events, a module that provides XML languages with the “ability to
uniformly integrate event listeners and associated event handlers with Document Object
Model (DOM) Level 2 event interfaces” (www.w3.org/TR/xml-events/); and Ruby, which
we’ll look at now.

Ruby

Ruby refers to a fragment of text that has an association with another fragment of text,
known as the base text—it is most often used to provide a short annotation of the base
text, or a pronunciation guide, and is used frequently in East Asian typography. Typically it
can be presented as shown in Figure A-3.

Figure A-3. Ruby text

The Ruby text is roughly half the size of the base text (the name “Ruby” in this case comes
from the name of the 5.5-point font size historically used in British printing, about half the
size of the 10-point size used for normal text), and runs beneath it or above it, or along-
side it if the language is written vertically instead of horizontally. Using the Ruby elements
provides a semantic and structural association between the texts.

So far as browser support goes, it’s unfortunately a sorry state of affairs, with only Internet
Explorer for both Windows and the Mac offering any native support3 (and only really for
the “simple” variety of Ruby markup, detailed in the next section). There is also a Firefox
extension (http://piro.sakura.ne.jp/xul/_rubysupport.html.en) that provides some
support, though it comes with a dire warning that you should not use it if you want a sta-
ble browser, so use with caution. An alternative is to use the markup anyway, but then trick
nonsupportive browsers into displaying it as desired with CSS.

XHTML AS XML

199

A

3. Somewhat bewilderingly; you need to be writing to the XHTML 1.1 doctype to be using Ruby markup,
and XHTML 1.1 must be served as XML—which Internet Explorer doesn’t support. So what it’s doing
offering Ruby support is anybody’s guess, though I imagine it has something to do with providing for
the Asian market.

7656AppA.qxp 11/16/06 11:27 AM Page 199

As noted previously, there are two types of Ruby markup: simple and complex. The former
associates just a single fragment of Ruby text with a single fragment of base text, and it
also comes with a fallback mechanism so that nonsupportive browsers can make some
sense out of things. The latter allows authors to associate up to two Ruby texts with one
base text, and it also allows for groups of Ruby and base associations. However, complex
Ruby markup provides no fallback mechanism.

Simple Ruby markup
Simple Ruby markup consists of a single <ruby> container, which contains one <rb> element
for the base text (Ruby base) and one <rt> element for the Ruby text:

<ruby>
<rb>WWW</rb>
<rt>World Wide Web</rt>

</ruby>

Internet Explorer will display the Ruby element as shown in Figure A-4.

Figure A-4. The Ruby text in Internet Explorer

Nonsupportive browsers will display it as shown in Figure A-5.

Figure A-5. The preceding Ruby text in Firefox

It still makes sense, but it’s a bit untidy. Fortunately, the problem of nonsupportive user
agents has been dealt with; by using the <rp> element (Ruby parenthesis), we can make
the presentation of that Ruby content more appropriate:

<ruby>
<rb>WWW</rb>
<rp>(</rp><rt>World Wide Web</rt><rp>)</rp>

</ruby>

Supportive browsers will ignore the contents of the <rp>, but nonsupportive browsers will
display the parentheses, as shown in Figure A-6.

Figure A-6. Firefox shows the parentheses, but Internet Explorer will not.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

200

7656AppA.qxp 11/16/06 11:27 AM Page 200

This is exactly what user agents are supposed to do with tags and elements they don’t
understand—ignore them, but display their content anyway. It’s why you can use an
<abbr> but still have the content appear in Internet Explorer 6 and below.

Alternatively, if you’re not concerned about those user agents that don’t support CSS2,
you can use the CSS content property to automatically insert parentheses without having
to manually insert them in the markup:

rt:before { content: "(" }
rt:after { content: ")" }

Complex Ruby markup
More complex Ruby markup is used to associate more than one Ruby text with a base text.
To do this, you need to use some Ruby container elements—<rbc> and <rtc> (Ruby base
container and Ruby text container). Thus the following:

<ruby>
<rbc>
<rb>10</rb>
<rb>31</rb>
<rb>2002</rb>

</rbc>
<rtc>
<rt>Month</rt>
<rt>Day</rt>
<rt>Year</rt>

</rtc>
<rtc>
<rt rbspan="3">Expiration Date</rt>

</rtc>
</ruby>

The contents of each <rb> in the <rbc> element all now have an association with each of
the <rt> elements in the <rtc> element. Furthermore, the final <rt> in the second <rtc>
is using an rbspan attribute to indicate that it is associated with all three base texts.

The <rp> element cannot be used when you’re using complex Ruby markup—you can’t
place it within either an <rbc> or an <rtc> and remain valid. This is because <rp> was only
provided as a fallback mechanism, and trying to come up with a meaningful fallback dis-
play and constructing the markup could be difficult, if not impossible.

Summary
Despite the hype, serving XHTML as XML on the Web still appears to largely be a minority
interest; at most, web authors appear to be using content negotiation simply because that
appears to be the right thing to do according to the XHTML specifications, rather than

XHTML AS XML

201

A

7656AppA.qxp 11/16/06 11:27 AM Page 201

there being many inherent benefits to it. I suspect that a key reason behind the low adop-
tion of XHTML as XML is the absence of any support from Internet Explorer—even version
7 fails to recognize the application/xhtml+xml MIME type—but it could also be because
XHTML as XML demands more from the author, and part of HTML’s appeal is that it’s rela-
tively simple for people to pick up. Indeed, it’s arguable that had the language not been as
straightforward, and had browsers been draconian in their handling of poorly written
markup, the Web might not have proven to be so popular. This is just theorizing, though.

Seeing as XHTML 1.1 and the forthcoming XHTML 2.0 come with an insistence that they be
served as XML, it seems that as far as the W3C is concerned, XHTML as XML is the future.
When this future will arrive, however, is anybody’s guess.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

202

7656AppA.qxp 11/16/06 11:27 AM Page 202

7656AppA.qxp 11/16/06 11:27 AM Page 203

7656AppB.qxp 11/16/06 11:32 AM Page 204

APPENDIX B FRAMES, AND
HOW TO AVOID THEM

7656AppB.qxp 11/16/06 11:32 AM Page 205

Some things, I’m afraid, are simply unavoidable, and when you write a book purporting to
cover every (X)HTML tag that there is, you can’t just not mention frames because you don’t
like them—tempting though that may be. So here they are, but discussed in an appendix
rather than in a dedicated chapter, as their use usually contravenes every notion of good
practice, and more often than not there’s a better, more accessible and usable solution.

That said, we’re long past the days when frames were in common use anyway. The many
arguments against them—browsers struggled with printing framed pages and with book-
marking them, browsers lacking support for frames, and so on—have since dwindled due
to advances in browser technology. Despite these advances, however, problems do still
exist:

The browser’s back button can no longer work intuitively.

You can’t easily reference a specific document within a frameset.

The browser’s reload button may reload the entire frameset, resetting the frame con-
tents to their default sources, rather than reloading the specific framed document.

Search engines can struggle when navigating through framed documents.

Search engines can index pages outside of the frameset, producing pages lacking in
branding or navigation.

Numerous accessibility issues exist with using frames.

Even discoverability can be a problem if the web designer has set things so that the frames
lack borders and scrollbars; you may not even realize you’re within a frameset until you try
to refresh the page. Some browsers will allow you to right-click a framed page and reload
it or bookmark it, but you have to know where it is to be able to manipulate it; it isn’t
always clear. Frames always were a clunky solution to a problem with serious usability and
accessibility issues, and this remains the case today.

Furthermore, the arguments for them—mostly related to being able to include persistent
and consistent navigation on every page—have also dwindled due to advances in server
technology; using server-side includes (SSIs) or PHP server-side include statements (which
I’ll give an overview of later in this appendix in the section “Alternatives to frames”) allows
you to include consistent navigation on any page you like while only having to update one
file. CSS also allows you to create a frame-like appearance, as you’ll see further on in the
section “Frame-like behavior with CSS.”

So frames in their current incarnation can practically be considered obsolete. For those
who want to build their own website, even the cheapest hosting packages these days will
at least allow SSI, and the rise of hosted blog services such as LiveJournal, TypePad, and
Blogger (where both the website code and markup are all provided alongside the hosting)
means that amateur bloggers have much less of a need to build their own system from the
ground up.

However, they are still used, albeit rarely—such as in an offline help package distributed
with an application. There are also inline frames—the <iframe>—to consider. This element
is used a lot more, mostly to embed third-party ads (for instance, Google’s AdSense) on
your webpages, but it has been removed from strict XHTML 1.0, so when I get to it, I’ll give
you a look at what the W3C is planning for us to use instead: XFrames.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

206

7656AppB.qxp 11/16/06 11:32 AM Page 206

So, let’s begin by taking a quick look at how frames are currently used in (X)HTML, which
should be considered more as a historical footnote than recommended production tech-
niques; if you think you need to use frames, please do consider all the alternatives first. If
after that you still think you need to use frames, please use them with caution. Frame
markup remains valid markup (more or less) to this day, but there are many, many good
reasons as to why their use is now practically nonexistent.

(X)HTML frames
To use (X)HTML frames, first of all, you need to make sure you’re using the correct doc-
type (you may remember this from Chapter 1). There is a specific doctype that should be
used when, and only when, you’re using frames. For sites written in HTML, that doctype is

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/html4/frameset.dtd">

while the XHTML equivalent is similar:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

That doctype is to be used on the root document—the one that will contain the frames.
The doctypes you use on the files you’re loading into the frames do not have to use the
frameset doctype.

From there, the document will contain at least one <frameset>, which will define the num-
ber of rows and columns within the document, and will in turn contain usually at least two
self-closing <frame> elements, which will load in the framed documents. So the markup for
a simple two-frame document, in which the navigation frame is to be 80 pixels wide and the
content frame is to fill the rest of the available space, would look somewhat like this:

<frameset cols="80,*">
<frame src="nav.html" scrolling="no" noresize="noresize" ➥

name="navFrame" title="Navigation" />
<frame src="content.html" name="mainFrame" title="Content" />

</frameset>

There should technically also be a <noframes> section that displays content to
those user agents lacking support for frames; those that do support frames would
not display the contents. This is of less importance these days than it used to be,
as all browsers come with frame support—even text browsers such as Lynx come
with some support for navigating framed documents. Historically the <noframes>
content provided by developers has been limited to messages such as “Your
browser doesn’t support frames.” Not especially helpful, and another reason that
the use of frames had been criticized in the past.

FRAMES, AND HOW TO AVOID THEM

207

B

7656AppB.qxp 11/16/06 11:32 AM Page 207

Note the few frame-specific attributes in the preceding code. The <frameset> uses the
cols attribute, with a comma-separated list of values, to determine the number of
columns contained within the frameset, and the sizes of each one (using the * character to
indicate that the size should expand to fit—you can also use percentage values that allow
the frames to scale with the size of the viewport). If your frameset contains horizontal
frames instead of vertical frames (or a combination of both), the rows attribute works in
the same way.

The src attribute is used to point to the file to be loaded within the frame; it can be an
(X)HTML document, an image, a text file—anything that a browser can display. Because it
allows for both relative and absolute URLs, it is possible to load another website’s content
into your own frameset—a nefarious practice referred to as framejacking.

The noresize attribute used on the <frame> element prevents the frame from being
resized—fairly obvious that one. If left out, users can drag the border between the two
frames (if it’s visible) and change the width of the columns as they please.

There are some presentational attributes—scrolling (yes | no | auto) frameborder,
marginwidth, marginheight—these can all be better controlled with the CSS overflow,
border, and margin properties.

Finally, there exists here a longdesc attribute, which you may remember turned up in the
discussion of images in Chapter 2. The principle is similar here: the value of a longdesc is
a URL that points to a page giving a long description of the purpose of the frame, rather
than its content—as the content of the frame can change, a hard-coded description of
that content could cease very quickly to be accurate. The browser support, however, is the
same as for the variety—effectively zero.

Targeting links within frames
A link in one frame will always open within that frame, unless told otherwise; this can lead
to another problem from the frames era, where websites could get stuck in somebody
else’s frameset.

To get a link in one frame to open in another, you need to use the deprecated target
attribute on the link, and make sure each frame has a unique name. Thus, a link like this:

About

will open up the page about.html not in its own frame, but in the frame named
mainFrame. Adding target attributes on every link could get quite laborious, so you can
save a bit of time by using the <base> element. This is a self-closing element that sits in the
<head>, and it must be placed before any <style>, <script>, or <link> elements that are
pointing to external sources. Its purpose is to define the root URL that all relative links
should use as their base:

<head>
<base href="http://unfortunatelypaul.com" />
...

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

208

7656AppB.qxp 11/16/06 11:32 AM Page 208

So in the preceding example, when you click the About link, the browser would read that
URL as http://unfortunatelypaul.com/about.html—even if the site domain was different.

Why is this relevant here? Because you can also include a target attribute within the
<base>:

<head>
<base target="mainFrame" />
...

By including this in the markup of your navigation page, each link will gain the target
attribute value without your needing to type it in on each <a>. To solve the problem of
new sites opening within a frameset, you can use a target value of _top on any external
hyperlinks, which will replace the entire frameset.

Inline frames
An inline frame does not require the use of a frameset doctype. It is used to create a fixed-
width box1 into which another document can be loaded, and it can be placed into a web
page in exactly the same way as you would place a <div> or a <table> or any other ele-
ment. It loads its content via the src attribute just like a regular frame, and its noframes
content is actually stored within the content of the tag itself:

<iframe src="frame.html">➥

View the content of this frame</iframe>

A browser that supported the <iframe> element would ignore its content and display the
contents of frame.html within the frame boundaries; a browser that lacked <iframe> sup-
port would instead display the link to the document.

There are several presentational attributes that can be used, all of which can be better
controlled with CSS; the scrolling attribute mentioned earlier that determines whether a
scrollbar will ever be visible on the frame can be controlled with the CSS overflow
property (overflow: hidden, overflow: scroll, and overflow: auto). The frameborder,
marginwidth, and marginheight attributes can all be reproduced with border and margin.

Alternatives to frames
Server-side technologies allow for a lot of the functionality of frames to be reproduced. A
classic reason for using frames was to create consistent navigation; by including the navi-
gation menu in a frame, you could ensure it remained the same on every page. These days,
unless you’re creating a website that is to be run entirely from the client side, you can use

FRAMES, AND HOW TO AVOID THEM

209

B

1. Although you can give an <iframe> a width or height value in percentages, the frame won’t scale
when you resize your viewport. For instance, an <iframe> with a width of 60% will remain fixed at 60%
of whatever the width of the viewport was when the document was first loaded.

7656AppB.qxp 11/16/06 11:32 AM Page 209

server-side includes that piece together your files on the web server before sending the
completed pages down the pipe to the user. I’m going to take a very brief look at two ways
of doing this: with SSI and PHP.

First, SSIs. To use these, your files must usually end with an .shtml file extension rather
than .html or .htm, though this can be dependent on how your web server is set up. An
SSI looks like this:

<!--#include file="nav.html" -->

By placing that line in your web page, the server will insert the contents of nav.html into
the document in its place (assuming that nav.html is contained within the same directory
as the file you place this include in); then when you need to change your navigation, you
just have to change the contents of nav.html. You can find detailed instructions on all you
can do with SSIs in “Introduction to Server Side Includes” (http://httpd.apache.org/
docs/1.3/howto/ssi.html).

If PHP is available on your server, you can use that instead. Again, you will most likely need
to ensure your files all end with a .php extension, but servers can be set up to parse files
with an extension of .html or .htm as PHP, so check with your system administrator. A typ-
ical PHP include looks like this:

<?php include 'nav.html'; ?>

Also available is the require function, which will cause the page to stop loading if
nav.html is not available, and require_once, which acts in the same way as require, but
will not include nav.html more than once. PHP errors will be generated and displayed to
the user if there’s a problem, but these error messages can be suppressed by prefixing the
function with an ampersand, like this:

<?php @include 'nav.html'; ?>

More information on PHP includes can be found in the PHP manual (http://uk2.php.net/
manual/en/function.include.php).

Frame-like behavior with CSS
If you’ve previously used frames because of their distinct visual nature—a combination of
fixed and scrollable divisions—advances in server technology won’t be of much use to you.
However, advances in CSS (or, more accurately, advances in CSS support from the
browsers) allow you to reproduce these effects to some extent, though sometimes not
without a certain amount of cross-browser hackery.

At its most basic, use of the CSS overflow property can reproduce a frame-like effect; by
applying overflow:scroll to an element and constraining its width or height, a scrollbar
will appear, as shown in Figure B-1.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

210

7656AppB.qxp 11/16/06 11:32 AM Page 210

Figure B-1. A paragraph with a fixed width and height and overflow:scroll forcing a scrollbar; the
default is for the paragraph contents to spill out across the boundaries of the paragraph.

You can be even more specific by using the overflow-x and overflow-y properties, which
control the nature of the overflow in either the horizontal or vertical axis. These proper-
ties will cause your CSS to fail validation, however, as they were originally created by
Microsoft (though they are now supported in Mozilla browsers, as well as the very latest
bleeding-edge builds of Safari, and thus will probably be in a released version by the time
this book is in your hands). The two properties are being included as part of the CSS3 box-
model module (www.w3.org/TR/2002/WD-css3-box-20021024/#the-overflow-x), so they
will eventually be considered standard CSS, and the support is already there in the real
world.

Also of use is the position property with a value of fixed, which allows you to position an
element within the viewport and force it to remain in place while the rest of the content
scrolls. For instance, in Figures B-2 and B-3, the heading (an <h1>) remains visible while the
rest of the page content scrolls behind it.

Figure B-2. The header will remain in place as the content scrolls underneath it . . .

FRAMES, AND HOW TO AVOID THEM

211

B

7656AppB.qxp 11/16/06 11:32 AM Page 211

Figure B-3. . . . like so.

The CSS for this is simple:

h1 { position: fixed;}

This isn’t supported in Internet Explorer 6 and below (support has been introduced in IE7), but
there are various hacks and scripts available that can trick the browser and fake the effect. I’ve
had good results using a JavaScript solution provided by Doxdesk (www.doxdesk.com/
software/js/fixed.html), but you can also try the various CSS solutions around. (There
are several. Stu Nicholl’s, available at www.cssplay.co.uk/layouts/fixed.html, is one I’ve
used in the past to good effect.) A word of warning about this style of displaying your con-
tent though: if your users use their Page Down button to scroll the content, they can end up
having to use their cursor keys to go back up a few lines as the content scrolls underneath
the fixed element, so use with caution.

Roger Johansson has an exhaustive frame-like effect with support for multiple browsers,
detailed in “CSS Frames, v2, full-height (www.456bereastreet.com/archive/200609/
css_frames_v2_fullheight/). This sees the creation of a page with a fixed-height header,
a fixed-height footer that stays glued to the bottom of the browser viewport, and a scroll-
able middle section. Also of interest is Emil Stenström’s “Frames or Iframes with CSS”
(http://friendlybit.com/css/frames-or-iframes-with-css/).

Future frames: XFrames
The forthcoming XHTML 2.0 recommendation doesn’t include any frame markup; that
functionality will instead be available as an XML application named XFrames (not part of
any (X)HTML specification but sharing the syntax and some common elements), which is
being created to overcome many of the problems the current (X)HTML implementation of
frames suffer from. At the time of writing, no browser has any support for XFrames aside
from the X-Smiles browser mentioned in Chapter 7, so all of what’s to follow is largely the-
oretical and also subject to change, as the specification has not yet been finalized.

XFrame markup is a lot like the current (X)HTML frame markup. Replacing the <frameset>
is the <frames> tag, not to be confused with <frame>, which is more or less the same as its
(X)HTML equivalent. Also the same are the <head>, <title>, and <style> elements—
these all act exactly as you would expect them to. Finally, there’s a <group> element, which
replaces the notion of nested framesets. Here’s an example of a simple XFrames docu-
ment—this is a trimmed down example from the current XFrames working draft:

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

212

7656AppB.qxp 11/16/06 11:32 AM Page 212

<frames xmlns="http://www.w3.org/2002/06/xframes/">
<head>

<title>Home page</title>
</head>
<group compose="vertical">

<frame xml:id="banner" source="banner.html" />
<group compose="horizontal">

<frame xml:id="atoz" source="atoz.html" />
<frame xml:id="main" source="news.html" />
<frame xml:id="nav" source="nav.html" />

</group>
<frame xml:id="footer" source="copyright.html" />

</group>
</frames>

This describes a three-column layout topped and tailed with a horizontal header and a
horizontal footer that both span the widths of the three central columns. You can see that
the src attribute has been replaced by the source attribute—it still does the same thing,
though its value can be overridden by values in the URL, discussed in a moment. I’ll talk
about the compose attribute in a moment, but first let’s look at all those xml:id attributes.

The xml:id attribute is the same as the (X)HTML id attribute and follows the same rules.
It’s used for identifying the framed documents, but can also be used to populate the con-
tents of the frames via a reference in the URL. For example, if you had a document with
the file name example.xframes, and the markup was

<group compose="horizontal">
<group compose="vertical">

<frame xml:id="one" />
<frame xml:id="two" />

</group>
<frame xml:id="three" source="default.html" />

</group>

you could populate all of those frames with a URL like this:

http://example.com/example.xframes#frames➥

(one=one.html,two=two.html,three=three.html)

It’s a bit messy, but this way the URL is always representative of the contents of the frame-
set, changing in relation to the activities of the user, making it possible to bookmark and
reference specific frameset configurations. The value provided in the URL for the frame
named three will override the value set in the source attribute; if not set in the URL, it will
display default.html instead. In the absence of any values supplied, the frames simply
remain empty.

Regarding the presentation of XFrames, there’s more flexibility, and they follow the same
ethos of separating style from content that’s seen in the XHTML 2.0 working draft—where
all the markup can do is “suggest” to the rendering device how the markup should be
dealt with. This is from the current XFrames working draft (www.w3.org/TR/xframes/):

FRAMES, AND HOW TO AVOID THEM

213

B

7656AppB.qxp 11/16/06 11:32 AM Page 213

“An XFrames document is a specification for composing several documents, potentially of
different types, together in a view. The frames element forms the container for the com-
posed document. The individual sub-documents (‘frames’) may be composed together in
a rectangular space by placing them next to, or above, each other in rows and columns, or
they may be displayed as separate movable window-like panes, or as tabbed panes, or in
any other suitable manner.”

So there’s more flexibility in terms of displaying the framed content—traditionally, or as
movable windows, or as tabbed panes, and so on; this allows for a greater level of device
independence, with the user agent selecting a display method suitable to the display
device. A “suggestion” as to the preferred way of presenting an XFrame document can be
included within the XFrame markup—the compose attribute, used on the <group> tag. It
accepts values of

vertical: Frames within the group should be tiled vertically, one above the other.
This would also be the default value if the user agent didn’t understand the sup-
plied value.

horizontal: Frames within the group should be tiled horizontally, all along the
same row.

single: Only one frame at a time should be visible, but the user should be able to
see that other frames are selectable, so this is similar to a tabbed interface.

free: The frames are available as movable, overlapping windows within the frames
container.

So that’s XFrames in a nutshell: more powerful, flexible, and accessible than (X)HTML
frames, but probably not usable in a production environment for a good few years yet—
for the time being, merely another point of interest.

Summary
That covers frames—a collection of elements that were pretty horrible when first intro-
duced, continued to be horrible during their heyday, and remain horrible in obscurity
today. But, as the existence of XFrames demonstrates, they’re here to stay, in one form or
another, and when used appropriately and with an awareness of the many usability and
accessibility issues they can cause, they can be useful. Apart from <iframe>, though, it
would be a rare situation that leads the modern web designer to needing to use frames,
and until XFrames is finalized and has enough browser support to be usable, frames should
be considered a historical curiosity more than anything else.

HTML MASTERY: SEMANTICS, STANDARDS, AND STYLING

214

7656AppB.qxp 11/16/06 11:32 AM Page 214

7656AppB.qxp 11/16/06 11:32 AM Page 215

7656Index.qxp 11/16/06 11:35 AM Page 216

INDEX

7656Index.qxp 11/16/06 11:35 AM Page 217

A
<a> tag, 32–40
abbr attribute, 71
<abbr> element, 49–50
abbreviations, 49–50
accept attribute, 89
accept-charset attribute, 90
accessibility aids

scope attribute, 69–70
summary attribute, 64

Accessible Table Builder, 70
access key attributes, 39–40, 102
<acronym> tag, 49–50
acronyms, 49
action attribute, 89
adjacent sibling selector, 175–176
adr property, 125
<address> tag, 24, 120
after pseudo-element, 179
agents, 147
align attribute, 73, 106
almost-standards mode, 71–72
alt attributes, 50
alt attribute, 5
alt text, 160
alternate value, 34
ampersands, 10
anchor tags, 32–40
appearance attribute, 188
appendix value, 35
application/xhtml+html MIME type, 194
application/xhtml+xml MIME type, 12–13, 182–183, 197
appropriate values principle, 148
attribute selectors, 26
attributes. See also specific attributes

body, 17
class, 8–9
defined, 5
id, 8–9
values for, 10

autotabbing, 103
axis attribute, 70

B
 element, 42
background color, 163–165
background images, 51, 166, 174
background-image property, 44, 51, 179
base text, 199
<basefont> element, 42
<bdo> element, 171–172
Berners-Lee, Tim, 145

INDEX

218

bidirectional override element, 171–172
<big> element, 43
<blockcode> tag, 187
block elements, 7–8
<blockquote> element, 24–27
block quotes, 24–27
block-level box, 7–8
<body> tag, 17, 160–167
boldface text, 42
bookmark value, 35
bookmarklet, 129
border attribute, 73
border property, 181
border-collapse property, 74
border-spacing property, 75
bordercolor attribute, 73
borders, 73, 163

single-pixel, 108
table, 74–75

boxes, 7
check boxes, 92, 103
inline-level, 7–8
with rounded corners, 173–174

 tag, 23
breadcrumb trail, 177–180
button input, 94
<button> element, 96–97
buttons

radio, 92–93, 103, 108
reset, 93
submit, 94

C
<canvas> element, 191
<caption> element, 63–64
cell padding attribute, 74–75
cell spacing attribute, 74–75
<center> tag, 161
centering, 161–162
changes, document, 40–41
chapter value, 35
check boxes, 92, 103
citations, 46
cite attribute, 25–27, 46, 120
<cite> element, 46
class attribute, 5, 8–9, 79, 175–177
closing tags, 5
code, valid, 181–183
<code> element, 47–48
coding, 47–48
<col> tag, 67–68, 76–77
<colgroup> tag, 67–68, 76–77
collapsed border model, 75

7656Index.qxp 11/16/06 11:35 AM Page 218

collapsing borders model, 74
cols attribute, 208
colspan attribute, 66–67
columns

adding to tables, 66–67
faux, 51
styling, 76–77

comments, conditional, 81–82
compact attribute, 136–140
composed attribute, 214
conditional comments, 81–82
contact information, 24, 123–129
content

centering, 161–163
separating layout from, 60
tagging, 134–135

content attribute, 118
content negotiation, 12
content property, 179–180, 201
contents value, 35
controlled vocabulary, 149
copyright value, 35
CSS (Cascading Style Sheets)

attribute selectors, 26
background images, 51, 166, 174
first-letter pseudo-element, 173, 177
first-line pseudo-element, 176–177
:focus pseudo-class, 109–110
for forms, 109–110
frame-like behavior with, 210–212
:hover pseudo–class, 80
table styling, 72–81
:target pseudo-class, 38
zoom layouts, 35

D
data. See also content

associating with table headers, 68–71
sorting in tables, 83–84

datetime attribute, 120
DCMI (Dublin Core Metadata Initiative), 119, 147–149
<dd> (definition descriptions) tag, 31
definition lists, 28, 31–32
definitions, 47
 tag, 40–41
descendent selectors, 175
description property, 143
<dfn> element, 47
disabled attribute, 96, 113
<div> tags, 6, 23

overuse of, 158–170
proper uses of, 159
vs. tables, 169

INDEX

219

<dl> tag, 28, 31–32
Doctorow, Cory, 120
doctype declaration, 14–16
doctype switching, 16
doctypes

available, 15
for frames, 207
purposes of, 16
standards mode and, 71
Transitional, 71
XHTML 1.1, 197

document markup elements, 22–41
changes, 40–41
contact information, 24
headings, 23–24
line breaks, 23
links, 32–40
lists, 28–32
paragraphs, 22
quotes, 24–28

Document Type Definition (DTD), 14–15
document.createElement method, 197
document.getElementByTagName method, 197
document.write method, 197
DOM Scripting, 26–27, 81
double quotes, 10
drop caps, 172–173
dtreviewed property, 143
Dublin Core Metadata Element Set (DCMES), 147
Dublin Core Metadata Initiative (DCMI), 119, 147–149
dumb-down principle, 148

E
elements. See also tags

block, 7–8
closed, 10
defined, 4
empty, 5
inline, 7–8
numbers of, in HTML vs. XHTML, 10
self-closing, 5

 tag, 42, 46, 170, 176
em units, 23
emphasis, 42, 46, 170, 176
empty elements, 5
empty-cells property, 75
enctype attribute, 89
Endo newsreader software, 133
error messages, in forms, 104
event class, 130
event handlers, form, 113–115
event listings, hCalendar format and, 129–133
eXtensible Markup Language. See XML

7656Index.qxp 11/16/06 11:35 AM Page 219

F
faux columns, 51
favelet, 129
<fieldset> element, 100–101, 107
file input, 91–92
first-letter pseudo-element, 173, 177
first-line pseudo-element, 176–177
Flash media, 182
Flickr, 135
:focus pseudo-class, 109–110
folksonomy, 152
font modifier elements, 42
font

boldface, 42
italic, 42, 47
size, 43

font style elements, 42–43
font-size property, 43
 element, 42
footers, 64–65, 80, 169–170
for attribute, 101
foreign languages, 171–172
form controls, 188

disabled, 113
styling, 108–109

form handlers, 104
form markup, 88–104. See also forms

<button> element, 96–97
<fieldset> element, 100–101
<form> element, 88–90
<input> element, 90–96

button input, 94
checkbox input, 92
file input, 91–92
hidden input, 93
password input, 91
radio buttons, 92–93
range input, 94–96
reset buttons, 93
search input, 94–96
submit buttons, 94
text input, 91

<isindex> element, 97
<label> element, 101–102
<select> element, 97–100
<textarea> element, 96

<form> element, 88–90
form usability, 102–104, 109–110
Formal Public Identifier (FPI), 14
forms. See also form markup

event handlers, 113–115
layout, 105–108
as navigation, 112–113

INDEX

220

overview, 88
scripting, 111–115
styling, 104–110
using CSS, 109–110
validation, 111–112

fragment identifier, 32
frame attribute, 73
framejacking, 208
<frame> element, 207
frames

alternatives to, 209
attributes for, 208–209
CSS in place of, 210–212
disadvantages of, 206
inline, 209–212
targeting links within, 208–209
XFrames, 212–214
(X)HTML, 207–208

<frames> tag, 212–213
<frameset> tag, 207–208
Friend of a Friend (FOAF), 152
future technologies, 186–191

G
Gates, Bill, 122
geo property, 126
get method, 91
get value, 89
Global Whitespace Reset technique, 158
glossary value, 35
Google Maps, 152
<group> element, 212–214

H
<h1> tag, 24, 159
hCalendar microformat, 129–133
hCard, 121
hCard creator, 128
hCard microformat, 123–129, 142
hCard-to-vCard conversion tool, 128
<head> element, 16
headers, table, 62–64, 68–71, 80
headers attribute, 69–70
headings, 23–24, 159
help value, 35
height attribute, 73
hidden input, 93
horizontal menus, 180–181
horizontal rule, 44
hover effect, with scripts, 82–83
:hover pseudo–class, 80

7656Index.qxp 11/16/06 11:35 AM Page 220

<hr> element, 43–44
href attribute, 32
hreflang attribute, 34
hReview microformat, 141–144
HTML, 5, 186

terminology, 4–9
vs. XHTML, 9–13
XHTML as, 199, 202

HTML documents, anatomy of, 17–18
<html> element, 16, 165
HTTP redirects, 120
http-equiv attribute, 119
Hume, Andy, 129

I
<i> element, 42, 171
iCalendar standard, 129–132
id attribute, 8–9, 32–33, 69–70, 102
<iframe> tag, 209
image maps, 51–54
images, 50–56

alt attributes, 50
alt text in place of, 160
background, 51, 166, 174
CSS background, 51
inline, 50–51
objects, 55–56

 element, 50–53
index value, 35
initalisms, 49
inline elements, 7–8
inline frames, 209–212
inline images, 50–51
inline quotes, 27–28
inline-level box, 7–8
<input> element, 90–96

button input, 94
checkbox input, 92
file input, 91–92
hidden input, 93
password input, 91
radio buttons, 92–93
range input, 94–96
reset buttons, 93
search input, 94–96
submit buttons, 94
text value, 91

<ins> tag, 40–41
internationalization

emphasis and, 46
foreign languages, 171–172

introductory text, 175–176

INDEX

221

invalid markup, 181–183
<isindex> element, 97
ismap attribute, 52
italic text, 42, 47
item property, 142
<item> element, 188

J
JavaScript, 197

for forms, 111–115
for tables, 81–84

jump menus, 112

K
<kbd> element, 47–48
keyboard input, 48
keyword stuffing, 120
keywords attribute, 120

L
label attribute, 98–99
<label> element, 101–102
lang attribute, 118, 171
last-item property, 180
legend attribute, 101
<legend> element, 110
 element, 29
license property, 143
line breaks, 23
line-height, 71
<link> tag, 32
links, 32–40

accessibility of, 39–40
anchor tags, 32–40
relationship issues, 34
skip, 33–37
targeting, 37–38
targeting within frames, 208–209

list items, 29
lists, 28–32

definition, 28, 31–32
ordered, 28–31
unordered, 28–31

longdesc attribute, 50, 208

M
<map> element, 51–53
maps, image, 51–54
margins, 158, 162–163

7656Index.qxp 11/16/06 11:35 AM Page 221

maxlength attribute, 91
menus, 97–100

horizontal, 180–181
jump, 112
rounded-corner, 165–167

<meta> element, 118–121
metadata, 118–121

accuracy of, 120
standards, 119

<meter> tag, 190
method attribute, 89
microformats, 121–144

creation, 122
defined, 121–122
hCalendar, 129–133
hCard, 121–129
hReview, 141–144
rel-, 133–135
structured blogging and, 149–151
VoteLinks, 135–136
XFN, 122, 138
XOXO, 136–138

MIME types, 12–13
application/xhtml+html, 194
application/xhtml+xml, 12–13, 182–183, 197

modularization, 198–199
monospaced font, 42, 47
multiple attribute, 97–98

N
name attribute, 32–33, 90, 97, 118
navigation

breadcrumb trail, 177–180
forms for, 112–113
with frames, 209
lists, 187
rounded-corner menus, 165–167
semantics and, 177–181

news headlines, 167–169
next value, 35
nextfocus attribute, 187
<nl> tag, 187
<noframes> tag, 207
nonstructural failures, 182
noresize attribute, 208
:nth-child pseudo class, 79

O
<object> tag, 55–56
objects, 55–56
 tag, 28–31
onchange attribute, 112

INDEX

222

onclick event handler, 113
one-to-one principle, 148
onfocus attribute, 115
onfocus event handler, 114
onkeypress event handler, 113
onmouseclick events, 81
onreset event handler, 113
onselect event handler, 113
onsubmit event handler, 113
ontology, 146
opening tags, 5
Opera, 35, 40
<optgroup> element, 99–100
<option> tag, 97–98
ordered lists, 28–31
<output> element, 189
overflow property, 209–211
OWL (Web Ontology Language), 146

P
<p> element, 22
padding, 158
paragraphs, 22
password input, 91
permalink property, 143
PHP server-side includes, 210
phrase elements, 46–50
Piggy Bank, 152
position property, 211
post value, 89
<pre> element, 23, 43–47
presentational attributes, for tables, 73–74
presentational elements, 41–45
prev value, 35
prevfocus attribute, 187
profiles, 119
programmatic drawing, 191
properties. See specific properties
<progress> tag, 190
Public Text Class (PTC), 15
Public Text Description (PTD), 15

Q
<q> tag, 27–28
qualified set, 147
qualifiers, 148
quirks mode, 16, 71
quotes, 24–28

block, 24–27
double, 10
inline, 27–28
single, 10

7656Index.qxp 11/16/06 11:35 AM Page 222

R
radio buttons, 92–93, 103, 108
range input, 94–96
<range> element, 189
rating property, 143
<rbc> element, 201
RDF, 148
read more link, 169
redirections, 120
ref attribute, 188
regular expressions, 111
rel attribute, 34–38, 138
rel- microformats, 133–135
rel-license microformat, 133
rel-nofollow format, 133
rel-tag microformat, 134
rel=“tag”, 37
remote rollovers technique, 174
replaced elements, 5
require function, 210
reset buttons, 93
Resource Description Framework (RDF), 119, 146
response message headers, 119
rev attribute, 34, 135
reviews, standardization of with hReview format, 141–144
rich media, hCards and, 127–128
role attribute, 187
rollovers, 174
rounded corners, 173–174
rounded-corner menus, 165–167
rows

adding to tables, 66–67
zebra striping, 78–80, 83

rows attribute, 208
rowspan attribute, 66–67
<rp> element, 200
<rt> element, 200
<rtc> element, 201
Ruby base container, 201
Ruby markup

complex, 201
simple, 200

Ruby text, 199–201
Ruby text container, 201
rules attribute, 73

S
<s> element, 43
<samp> element, 47–48
SB (Structured Blogging), 149–151
scheme attribute, 119
scope attribute, 69–70

INDEX

223

<script> element, 5
scripts

form, 111–115
hover effect, 82–83
table, 81–84

scrolling attribute, 209
search engines, spamming, 120
search input, 94–96
<section> element, 159, 186
section value, 35
<select> element, 97–100, 112
self-closing elements, 5
semantic class names, 118
Semantic Web, 145–152
semantics

avoiding div tags, 158–170
avoiding overuse of , 170–174
navigation, 177–181
overuse of class attribute, 175–177
validity and, 181–183

separated borders model, 74
separators, 44
server side includes (SSIs), 210
single quotes, 10
single-pixel borders, 108
size attribute, 96–97
skip links, 33–37
<small> element, 43
source attribute, 213
spacing, adding, 23
 tag, 6, 168–169

avoiding overuse of, 170–174
determining when to use, 173–174

speak-header property, 63
spectators, 153
src attribute, 128, 187, 208
SSIs (server side includes), 210
standards mode, 16, 71
start attribute, 29
start value, 35
<strike> element, 43
strikethrough text, 43
 tag, 42, 46, 170–171
structural elements

body, 160–167
footers, 169–170
news headlines, 167–169
overuse of div tags for, 158–170
rounded-corner menus, 165–167

structural failures, 182
Structured Blogging (SB), 149–151
stylesheet value, 34
<sub> element, 43–45

7656Index.qxp 11/16/06 11:35 AM Page 223

submit buttons, 94
subscript, 45
subsection value, 35
summary attribute, 64
summary property, 142
<sup> element, 43–45
superscript, 45

T
<t> tag, 190
tabindex attribute, 39–40, 102
table captions, 63–64
table headers, 62–64

abbreviating, 71
associating data with, 68–71

table markup, 60, 72
table of contents (TOC), 24
<table> tag, 61
tables

adding columns to, 66–67
almost-standards mode and, 71–72
basics, 61–64
borders, 74–75
cell spacing, 74–75
column styles, 76–77
vs. divs, 169
footers, 64–65, 80
hover effect in, 82–83
presentational attributes, 73–74
row striping, 78–80
scripting, 81–84
scrollable, 80–81
sorting, 83–84
structuring, 64–68
styling, 72–81

tabular data, 60
tag-based navigation, 135
tagging content, with rel-tag microformat, 134–135
tags

<a>, 32–40
<abbr>, 49–50
<acronym>, 49–50
<address>, 24, 120
, 42
<basefont>, 42
<bdo>, 171–172
<big>, 43
<blockcode>, 187
<blockquote>, 24–27
<body>, 17, 160–167

, 23
<button>, 96–97

INDEX

224

<canvas>, 191
<caption>, 63–64
<center>, 161
<cite>, 46
closing, 5
<code>, 47–48
<col> 67–68, 76–77
<colgroup>, 67–68, 76–77
<dd>, 31
, 40–41
defined, 5
<dfn>, 47
<div>, 6, 23, 158–170
<dl>, 28, 31–32
, 42, 46, 170, 176
<fieldset>, 100–101, 107
, 42
<form>, 88–90
<frame>, 207
<frames>, 212–213
<group>, 212–214
<h1>, 24, 159
<head>, 16
heading, 23–24
<hr>, 43–44
<html>, 165
<i>, 42, 171
<iframe>, 209
, 50–53
<input>, 90–96
<ins>, 40–41
<isindex>, 97
<item>, 188
<kbd>, 47–48
<label>, 101–102
<legend>, 110
, 29
<link>, 32
lowercase, 10
<map>, 51–53
<meta>, 118–121
<meter>, 190
<nl>, 187
<noframes>, 207
<object>, 55–56
, 28–31
opening, 5
<optgroup>, 99–100
<option>, 97–98
<output>, 189
<p>, 22
<pre>, 23, 43–47
<progress>, 190

7656Index.qxp 11/16/06 11:35 AM Page 224

<q>, 27–28
<range>, 189
<rbc>, 201
<rp>, 200
<rt>, 200
<rtc>, 201
<s>, 43
<samp>, 47–48
<section>, 159, 186
<select>, 97–100, 112
<small>, 43
, 6, 168–174
<strike>, 43
, 42, 46
<sub>, 43–45
<sup>, 43–45
<t>, 190
<table>, 61
<Tbody>, 64–65
<td>, 61
<textarea>, 96
<tfoot>, 64–65, 80
<th>, 62
<thead>, 64–65, 80
<title>, 120
<tr>, 61
<tt>, 42
<u>, 43
, 28–31
<var>, 47–48

tags property, 143
target attribute, 37–38
:target pseudo-class, 79
<Tbody> tag, 64–65
<td> tag, 61
Technorati, 36–37, 135
tel property, 126
teletype, 42
terminology, 4–9
text

abbreviated, 49–50
bold, 42
coding, 47–48
emphasis, 42, 46, 170–171, 176
font changes, 42–43
introductory, 175–176
italic, 42, 47

<textarea> element, 96
text value, 91
text-decoration property, 43
<tfoot> tag, 64–65, 80
<th> tag, 62

INDEX

225

<thead> tag, 64–65, 80
time tag, 190
title attribute, 39–40, 120, 143
<title> tag, 120
TOC (table of contents), 24
<tr> tag, 61
Transitional doctype, 71
triple expressions, 119
<tt> element, 42
type attribute, 90–91
type property, 142
types, 126–127

U
<u> element, 43
 tag, 28–31
underlined text, 43
unordered lists, 28–31
usemap attribute, 52

V
valid markup, 181–183
validation, 181–183
value attribute, 29, 91
<var> element, 47–48
vcalendar class, 130
vCards, 123, 127–128
version property, 141
visual thinking, 159
VoteLinks microformat, 135–136

W
Web 2.0, 152–154
Web Applications 1.0, 186, 190–191
Web Forms 2.0, 186, 191
Web Hypertext Application Technology Workgroup

(WHATWG), 190
Web Ontology Language (OWL), 146
well-formed markup, for XML, 196–197
white-space property, 44
whitespace, 44–45
width attribute, 73
WYSIWYG software, for table markup, 72

X
XFN (XHTML Friends Network) microformat, 122, 138
XForms, 188–189
XFrames, 212–214

7656Index.qxp 11/16/06 11:35 AM Page 225

XHTML
future technologies, 186–191
as HTML, 199, 202
vs. HTML, 9–13
robustness of, 11
rules for, 9
terminology, 4–9
valid, 181–183
as XML, 194–197

XHTML 1.1, 197–201
XHTML 2.0, 186–190, 199
XHTML Basic, 15, 198
XHTML documents, anatomy of, 14–17
XHTML Family document type, 198
XHTML Mobile Profile, 198
XHTML–Print, 199
XML (eXtensible Markup Language), XHTML as, 194–197
XML declaration, 17
XML Events, 199
xml:id attribute, 213
xmlns attribute, 10
XOXO (eXtensible Open XHTML) microformat, 136–138

INDEX

226

Y
YouTube, 135

Z
zebra striping, 78–80, 83
zoom layouts, 35

7656Index.qxp 11/16/06 11:35 AM Page 226

	HTML Mastery: Semantics, Standards, and Styling
	Table of Content
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Appendix Af
	Appendix Bf
	Index

